
Antikythera Publications
DATABASE DESIGN NOTE SERIES

Relational Database Design
http://www.AntikytheraPubs.com

sweiss @ AntikytheraPubs.com

Exploring Complex Text Layout (CTL)
Multi-script Database Series #2 – Version 2

Prepared by: S. L. Weiss and F. Oberle (แฟรงค ์โอเบอลี – फ़ऐग ओबरली)

As we saw in “Exploring Alphabets” – the first in this series of Design Notes, under-
standing and handling the storage and display of many non-Latin Scripts can be
tricky concepts that many database designers and DBAs are unfamiliar with.

That earlier document introduced the idea of a lack of one-to-one correspondence
between the characters we see (or think we see) on the screen, and the characters
stored in our databases.

This document is meant to be an informal – and therefore sometimes less than pre-
cise – introduction to the factors that led some early product developers to categorize
many Scripts as “Complex.” So, depending on the particular Scripts you need to sup-
port in your database, you will need to become familiar with many of these factors.

Because the names of your company’s new customers آمنة , นัฐพงษ์, Jennifer, りく
and आदि@त्या could very well end up on printed reports and correspondence, a famil-
iarity with the various characteristics the Scripts used to write their names have can
be very helpful in analyzing any issues that arise.

Revised for public distribution: 20 December 2016 and January 2018

See page 42 for information on other material from Antikythera Publications.

PGGS

Copyright © 2016 & 2018 by the Authors and Antikythera Publications (updated 2019)

Permission is granted to distribute unaltered copies of this document, so long as this is not done for com-
mercial purposes.

www.AntikytheraPubs.com

Database Design Notes about Multi-Language/Multi-Script Database Considerations

1. Exploring Alphabets

2. Exploring Complex Text Layout

3. Exploring UTF-8

4. Evaluating Fonts for use in Multi-Lingual Documents

5. Exploring Bidirectional Text Entry

6. Exploring Arabic Script Behavior

7. Exploring Han Script Behavior in Chinese

Database Design Note Series – Exploring Complex Text Layout

PREFACE

This document is meant to be an informal – and therefore sometimes less than precise – introduction to what are com-
monly known as Complex Text attributes. In spite of the CTL acronym’s appearance in many pieces of software – the
most notable examples being word processors such as LibreOffice Writer and Microsoft Word – that purport to handle
such layouts, many of them are rather vague about what exactly is being supported and use the term rather indiscrimi-
nately. Published standards occasionally allude to some of these “complex” attributes in one guise or another, but pro-
vide no formal definitions.1

Objectives
The objectives of this document therefore are to provide:

• a broad overview of the subject area referred to with the unfortunate name Complex Text Layout2, usually
given the acronym CTL;

• specific examples of various CTL characteristics in at least one appropriate script and language;

• specific instructions on how each example can be duplicated by a user/writer/developer who may have no fa-
miliarity with the script or language used;

• an implicit justification that ‘complex’ has, over time, become an arbitrary and obsolete categorization that
should be abandoned as quickly (but in as non-disruptive a manner) as possible. What’s now considered ‘com-
plex’ – ‘oddities’ or ‘exceptions’ – should be viewed simply as equally legitimate alternatives, some of which
long predate what we consider “normal.”. With generalized design made possible by advances in software
technology and continued progress toward globalization, these distinctions can and should be abandoned.

Requirements
To experiment with these CTL behaviors, rather than simply reading about them, you will need:

• Access to a decent source of reasonably identical text samples in many languages. The opening section of the
United Nations Universal Declaration of Human Rights3 is a good choice, since its content – in over 360 dif-
ferent Languages – comes from the same source.

• Knowledge of at least one technique for entering Unicode characters that don’t appear as keys on whatever
keyboard is in use. An overview of such techniques is provided in Character Entry Methods on page 35. We
recommend that developers install an Input Method Editor (IME) for any Language or Script that will be used
in any databases being updated/enhanced to support multi-lingual, multi-script data.

• An installed font containing the Unicode Basic Latin, Latin-1, Thai, Devanagari, Basic Hebrew, Basic Arabic,
and Korean Code Blocks; the FreeSerif font4 (the NanumMyeongjo font is used for Korean) is recommended
unless you know how to confirm the presence of the scripts listed above on your own. Methods for identifying
which of your installed fonts support which particular Languages and Scripts are out of scope for this paper,
but another Design Note in this series covers this in detail (see footnote 4 below).

1 Tellingly, the phrases ‘complex text’ and ‘language’ are seldom found in these formal discussions!
2 We do enough ranting about this on our own, but the site https://aharoni.wordpress.com/2011/10/23/western-asian-and-com-

plex/ has an interesting take on this subject as well.
3 “Human beings are born free in dignity and equal rights.” The site www.omniglot.com/udhr/index.htm contains links to the

text of Article 1 of this declaration translated into over 300 languages which can easily be copied into any test documents.
4 The FreeFont family can be downloaded from http://www.gnu.org/software/freefont/ and likely other sites. Although there is

no such thing as a “pan-unicode” font, everyone who deals with multiple scripts and/or languages should have a decent single
fallback font that can be used to cover all the languages you will need. Also see the fourth Design Note in this series Evaluat-
ing Fonts for use in Multi-Lingual Documents, also available from www.AntikytheraPubs.com/i18n.htm.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 3 OF 42 ANTIKYTHERA PUBLICATIONS

TABLE OF CONTENTS

Preface..3
Objectives..3
Requirements...3

Defining Complex Text Layout – What it is and what it isn’t!..7
FIGURE 1 – LANGUAGES DIALOG IN LIBREOFFICE WRITER..7

Role of System Components in Managing text Layouts..7
Characteristics of so-called Complex Text Layout (CTL)..9

Characters and Character Cells...9
Alphabetic Characters...9

A IS FOR APPLE..9
Consonants and Vowels..9
Vowel Varieties..9
Characters as Diacritics...10
Accents, Tones, and Breathing Marks as Diacritics..10
Character Cells..10
Contextual Character Forms (Alternative Characters)..10
Contextual Character Shaping (Shape Changing)...11
Character Reordering and Placement...11
Illegal Character Combinations..12
Composite Characters..12
Ligatures (Composite Glyphs)...12
Dead Keys...12

FIGURE 2 – DEAD KEYS ON A MANUAL THAI TYPEWRITER (CIRCA 1970)..12
Perceived Cultural Issues...13

Text Layout Direction (Writing Mode)...13
FIGURE 3 – BOUSTROPHEDON TEXT LAYOUT..14
FIGURE 4 – REVERSE BOUSTROPHEDON TEXT LAYOUT...14
FIGURE 5 – THE PHAESTOS DISK...14

Mixed Text Directions – Bidirectional Text...15
Default Paragraph Directionality (Primary Text Direction) in Text with Mixed Directions.....................15
Cursor Movement when Entering or Editing Text in Bidirectional Paragraphs.......................................15
Paired Symbols in Text with Mixed Directions..17

FIGURE 6 – ENGLISH (US) KEYBOARD LAYOUT SEGMENT..17
FIGURE 7 – HEBREW KEYBOARD LAYOUT SEGMENT..17

Rulers, Guides, and Tabs in Text with Mixed Directions..18
Left, Right, and Center Tab Stops..18

FIGURE 8 – LEFT-TO-RIGHT RULER WITH TAB SETTINGS..18
FIGURE 9 – RIGHT-TO-LEFT RULER WITH MIRRORED TAB SETTINGS...19
Decimal Tab Stops...19

FIGURE 10 – LEFT-TO-RIGHT RULER WITH A DECIMAL TAB SETTING..19
FIGURE 11 – MIRRORED RTL RULER WITH A DECIMAL TAB SETTING...19

Detecting Primary Text Direction in Paragraphs..20
Text Alignment in Documents with Mixed Directions..20

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 4 OF 42 ANTIKYTHERA PUBLICATIONS

FIGURE 12 – LEFT ALIGN...20
FIGURE 13 – BIDIRECTIONAL...20

Transitioning between Text Directions within Paragraphs..20
Justification...20

Ragged Justification...20
Full Justification...21

Kashideh..21

Word Breaks, Line Breaks, and Hyphenation..21
Collation and Sorting..22

A Final Reminder...22
CTL Examples in Practice..23

Disclaimer...23
Common Examples of Mixing Numeric Scripts...23

Thai Script examples using ภาษาไทย (the Thai Language)...24

Brief Comments about Thai...24
Examples for Experimentation (No knowledge of Thai needed)...24

FIGURE 14 – THAI, WITHOUT AND WITH FULL JUSTIFICATION...25

Devanagari Script examples using दिaं@ी भाषा भाषा (the Hindi Language)...26

Brief Comments about Hindi...26
Examples for Experimentation (No knowledge of Hindi needed)...26

FIGURE 15 – SAMPLE HINDI TEXT BLOCK...27

Arabic Script examples using العربيه 27..(the Arabic Language) اللغة

Brief Comments about Arabic...27
Examples for Experimentation (No knowledge of Arabic needed)...27

Kashideh Justification and emphasis..28
FIGURE 16 – ARABIC, BEFORE AND AFTER KASHIDEH JUSTIFICATION...28

Hebrew Script examples using עברית 29..(the Hebrew Language) שפת

Brief Comments about Hebrew..29
Examples for Experimentation (No knowledge of Hebrew needed)..29

FIGURE 17 – SAMPLE HEBREW TEXT BLOCK SHOWN WITH AND WITHOUT VOWEL INDICATORS......................29

Korean Script examples using 한국어 (the Korean Language)...30
Brief Comments about Korean...30

FIGURE 18 – KOREAN TEXT EXAMPLE...30
Examples for Experimentation (No knowledge of Korean needed)..32
Korean Numeric Characters...33
Converting Jamo Combinations to Hangul Syllables (the basic Math)..33
Converting Hangul Syllables to Jamo Components (the basic Math)..34

Character Entry Methods..35
FIGURE 19 – “INSERT > SPECIAL CHARACTER...” DIALOG BOX IN LIBREOFFICE WRITER................................35
FIGURE 20 – “ONBOARD” ON-SCREEN KEYBOARD – TYPICAL OF MANY AVAILABLE...36

Keyboard Maps used for this Document...37
Thai Script...37

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 5 OF 42 ANTIKYTHERA PUBLICATIONS

Thai Typing Demonstration/Practice (no knowledge of Thai required)..37
FIGURE 14A – ABBREVIATED THAI TEXT SAMPLE...37

Devanagari Script..38
Hindi Typing Demonstration/Practice (no knowledge of Hindi or Devanagari required)........................38

FIGURE 15A – ABBREVIATED HINDI TEXT SAMPLE...38
Arabic Script...39
Modern Standard Arabic Typing Demonstration/Practice (no knowledge of Arabic required)...............39

FIGURE 16A – ABBREVIATED MODERN ARABIC TEXT SAMPLE...39
Hebrew Script..40
Hebrew Typing Demonstration/Practice (no knowledge of Hebrew required)..40

FIGURE 17A – ABBREVIATED HEBREW TEXT SAMPLE...40
Korean Script..41
Korean Typing Demonstration/Practice (no knowledge of Korean required)..41

FIGURE 18A – ABBREVIATED KOREAN TEXT SAMPLE...41
Other Publications...42

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 6 OF 42 ANTIKYTHERA PUBLICATIONS

DEFINING COMPLEX TEXT LAYOUT – WHAT IT IS AND WHAT IT ISN’T!
A minimal definition of “Text Layout” for this document would be: “the placement of single or composite characters
and/or symbols into virtual character cells, and arranging those cells in the sequence and direction in which they are
intended to be displayed or printed.” It is important to stress that this sequence does not always match the order in
which these “characters” are stored or transmitted. The definition of a character cell and how it differs from its con-
tents is likewise important to understanding the significance of many of the attributes of so-called “complex text.” At
this point, it is only necessary to be aware that such cells exist; the use and significance of character cells will become
clear as the document proceeds. The previous paper in this series, Exploring Alphabets,” has more information.

So what makes text layout “complex?” On a Microsoft FAQ page,5 the author says: “A complex script is one that re-
quires special processing to display and process.” The page continues with some examples, but nothing that could be
considered a definition, and the term “special” is a bit vague.

The LibreOffice Writer Guide6 says that Writer
offers “support for Asian languages (Chinese, Ja-
panese, Korean) and support for CTL (complex
text layout) languages such as Hindi, Thai, He-
brew, and Arabic.” On the surface, these distinc-
tions seem reasonable, but that is questionable.

Its Getting Started Guide offers a somewhat differ-
ent interpretation of CTL: “LibreOffice … pro-
vides support for both Complex Text Layout
(CTL) and Right to Left (RTL) layout languages
(such as Urdu, Hebrew, and Arabic).” Writer’s
configuration dialog layouts imply moreover that
these categories are related to Language or Locale
which, while not entirely untrue, is misleading.

Wikipedia says that complex text layout is “the
typesetting of writing systems in which the shape
or positioning of a grapheme depends on its relation to other graphemes. The term is used in the field of software in-
ternationalization, where each grapheme is a character.”7 The first sentence in this quote is correct, but the second is
rather questionable. You can research the precise meaning of words such as character, symbol, glyph and grapheme if
you wish, but with no obvious consensus on the distinctions, this paper will simply discuss the concepts using words
that seem to us appropriate for the context.

The common thread in all these comments is that “complex” is a relative and often quite arbitrary term, and one could
be forgiven for suspecting it is mostly used to refer to layout issues the software developers were unfamiliar with, had
never encountered, or had never even heard of.

Role of System Components in Managing text Layouts
There are often many elements of a system that contribute to what is considered the layout of text on a screen or on
paper, some of which work together well, and some where conflicts occur. Such components include the Keyboard
used to enter the text and the low level BIOS and boot managers of the machine that initially recognize the keyboard
and determine what to do with its transmissions. Layered above those are the Operating System, which refines the in-
terpretation of inputs passed to it from the hardware, and optional input method editors (IMEs) and utilities, which

5 See https://msdn.microsoft.com/en-us/goglobal/bb688172.aspx; this is a bit dated, but still seems to be their view.
6 Page 67; see https://wiki.documentfoundation.org/images/e/e6/WG42-WriterGuideLO.pdf to view or download.
7 See http://en.wikipedia.org/wiki/Complex_text_layout

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 7 OF 42 ANTIKYTHERA PUBLICATIONS

Figure 1 – Languages Dialog in LibreOffice Writer

serve to translate (map) any input key sequences from native button pushes8 to characters normally not relevant to a
particular operating system.

Finally, there are individual applications, ranging from command line terminals, shells and desktop managers to much
larger and more sophisticated9 applications and suites for a wide variety of uses – many not obviously affected by text
layout, although all are to some degree or another. Word processors and publishing suites come to mind immediately,
but even graphics programs make use of text layout capabilities, both for display and printing. Music players should
have no difficulty displaying the native-language names of recordings that are available from any location in the world.
Genealogy software should be able to quote and discuss texts from the many languages that have been spoken by a
user’s ancestors. Enough said.

Early computing systems were quite limited in their text layout capabilities, and generalization and internationalization
of software designs was – to put it simply – technically prohibitive and too expensive. As technology matured, han-
dling of many characteristics discussed here came to be added in a totally uncoordinated and ad hoc basis.

Over the past decades, however, as various desired capabilities became technically feasible and appeared more often,
the most efficient and appropriate locations for many of these functions in the hierarchy of system components have
become settled. Printer support, for example, once handled by individual applications based on their own specific
needs, has long since migrated into the operating system, which presents such support as a service to any application
that might need it.

The distribution of significant portions of text layout capabilities now seems to be in the late stages of such a migra-
tion. The proliferation of incompatible character encodings has now been settled with the adoption of Unicode stan-
dards, although many obsolete or primitive mappings linger on. Storage layouts of character encodings in UTF-8 for-
mat has provided even further generalization and standardization. In most modern operating systems, the alphabets of
any languages – given the appropriate fonts to render them – can be freely intermixed, with their correct ordering and
display transformations kept intact. Mostly. Strange anomalies will pop up in the course of any transition to a multi-
lingual, multi-script system, though, and data custodians need to be aware of the impacts on their schemas.

A key component for the correct interpretation and display of “complex” text10, which isn’t covered in any detail here,
is the “rendering engine.” Although not of immediate interest here, many references are available concerning these.11

So far, the recognition of Language (as opposed to merely the writing system or script used to represent it on screen or
paper) remains the province of applications12 rather than operating systems or even input methods. Capabilities related
specifically to language, such as Spelling, Style and Grammar Checking and the like are examples of such functions,
although even these now appear to some extent as operating system services. The appropriate home for other func-
tions, such as Collation and Sorting still hasn’t been settled and, particularly where these encompass multiple lan-
guages,13 may likely always remain the province of specialized software.

8 Regardless of the characters printed on the key tops, keyboards have no concept at all of languages or scripts; they’re simply a
collection of switches arranged and grouped into what is hopefully a useful layout for a particular user or group.

9 Well, most attempt to be “sophisticated,” but the results can of course vary wildly.
10 For example, the layout adaptations shown in Examples for Experimentation (No knowledge of Thai needed) on page 24.
11 A dated, but still mostly accurate and informative link is: http://behdad.org/text/ A link aimed primarily at text rendering on

the web is: http://blog.typekit.com/2010/10/05/type-rendering-on-the-web/ (first of an Adobe series with continuation links)
12 And don’t forget, any DBMS or RDBMS is not itself actually a “database” but an Application used to help create and manage

the databases you build with its facilities.
13 This does occur, although I’ve never seen a convincing case that there is any useful purpose to doing so. Even in publications

with side-by-side translations, indexes that intermingle words of different languages can often be more difficult to use than if
the languages are are kept separate.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 8 OF 42 ANTIKYTHERA PUBLICATIONS

http://blog.typekit.com/2010/10/05/type-rendering-on-the-web/
http://behdad.org/text/

CHARACTERISTICS OF SO-CALLED COMPLEX TEXT LAYOUT (CTL)
Attempting to cover all the CTL characteristics that go into supporting a useful multilingual text editor or word pro-
cessor would be impractical, but this section will introduce and at least informally define selected characteristics re-
lated to text layout. Following this overview, examples of the more interesting ones will be presented using appropriate
languages in CTL Examples in Practice beginning on page 23.

Characters and Character Cells
Much of this section is a review and more detailed commentary on subjects introduced in the first Design Note of this
series, Exploring Alphabets, which we assume you have at least skimmed. In languages like English, we tend to think
of a character as a single entity – a letter of the alphabet, a symbol used for punctuation (comma, period and such), a
number or a mathematical symbol (0-9, plus and minus signs, etc.), and various symbols such as @, #, & and |. Thus,
we don’t tend to distinguish between characters and character cells, but for any text layout discussion, this becomes
necessary. First, however, we’ll look at some further distinctions among the variety of characters and symbols we use.

Alphabetic Characters
An alphabetic character can be defined most simply as one that is part of a language’s alphabet. The alphabet song
taught to school children in the U.S., for instance, does not include the comma, semicolon, period, the tab, or even the
space. Obvious, perhaps, but this series of Design Notes will show how fuzzy interpretation
of this term can result in user interface oddities, particularly in paragraphs that mix script
directions. A simple summary might be:

• All writing is done with symbols of some sort.
• All characters are symbols but not all symbols are characters;
• Not all characters are part of an alphabet;
• Some alphabetic characters may not “look like” what we call “letters.”

Detection of alphabetic characters is key to handling multi- or bidirectional paragraph lay-
outs in multilingual documents; an illustration of this is included in the fifth Design Note in
this series, Exploring Bidirectional Text Entry.

Consonants and Vowels
In English, we don’t consider there to be any distinction between the representation of consonants and vowels in our
text layouts; a vowel like ‘e’ is just as much of an alphabetic character as a consonant like ‘f.’ But this is not universally
true in the world’s alphabets. In order to be pronounced out loud, every syllable (every phoneme, if you will) must
have a vowel sound but need not have any consonant, and in spite of the fact that no consonant can be spoken without
adding some implicit vowel sound, consonants are considered more important in some writing systems. Vowels may
even be considered optional in some of those.

Vowel Varieties
In some writing systems, vowels aren’t recorded at all. In others, vowel sounds in a particular syllable are indicated
with techniques as varied as adding certain modifications to a syllable’s consonant,14 placing them as diacritics above
or below the consonant, or – as in English – recording the vowel as a “real” independent character. To make things
more interesting, even vowels that have full character status may not always be placed in the order in which they are
pronounced in a particular syllable.15

14 This is known as Contextual Shaping; see the eponymous section on page 11.
15 See the Thai and Hindi Examples for Experimentation beginning on pages 24 and 26 respectively, but if you’re thinking such

bizarre anomalies never occur in English, consider the spelling of the last syllable in the word “syllable.” Other considerations
related to vowel varieties in particular are presented in Character Reordering and Placement on page 11.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 9 OF 42 ANTIKYTHERA PUBLICATIONS

A is for Apple

Recognition of this variety of vowel placements will help when considering text layout in multiple scripts and lan-
guages. Examples of each type of vowel placement will be given in CTL Examples in Practice.

Characters as Diacritics
Vowel markings that are placed above or below a consonant belong to a symbol class called diacritics; other examples
of diacritic “characters”16 include the cedilla, the umlaut, and various tones, accents and breathing marks, any of
which help indicate a difference in pronunciation of the base syllable.

Accents, Tones, and Breathing Marks as Diacritics
These symbols are also common examples of diacritics. One fallacy in some CTL discussions is that complex text lay-
out is more commonly required in so-called “tonal languages.” Languages often mentioned in this context include Chi-
nese and Japanese but, except when spoken by politicians during their corruption trials, all spoken languages use both
accents and tones. The phrase “tonal languages” simply refers to writing systems that explicitly represent these – even
in cases where these representations are optional.

To clarify this distinction: Say the following sentence out loud: “But you know that left is the opposite of right, right?”
– first with an accent on the word “you” and then again with the accent on the word “know.” Each suggests an entirely
different interpretation, but the difference in placement of the vocal accent supplies enough information that a listener
would get a sense of which was meaning was intended.

The differences heard between the last two words (“right” and “right”) is clearly a tonal one. No matter how hard you
try, it is difficult to pronounce the last two words the same; you will use different tones and inflections. In English,
we’re just expected to know which tones and accents to use based on the context. From childhood, we learn to recog-
nize and use tones and accents in the same way we learn to memorize the secret rules for pronouncing words with
‘ough’ in them.17 We are just deprived of a way to write our tones!

Character Cells
As introduced in the first note of this series, Exploring Alphabets, many languages utilize “characters” that, in fact, are
actually composed of multiple symbols intended to be displayed as if they were a single entity. Thus, the importance
of a character cell – a position on a display or page that is treated as if it were one character, but may in fact “contain”
more than one stored symbol – must be recognized when dealing with Multi-Lingual, Multi-Script data.

Contextual Character Forms (Alternative Characters)
Character Forms should not be confused with a simple difference in the shape of a character such as those encoun-
tered when using different fonts. The “A” character might appear as A in one font and as A in another, but these differ-
ences are due to the font designs, and are irrelevant to text layout considerations.18

When discussing text layout, Character Forms are differences in a character based, not on a style, but on its position in
a word or what its neighboring characters are. Positions are generally characterized as:

• isolated: the form used when a character is displayed by itself, and not part of a larger word.
• initial: the form used when a character is the first character in a word.
• median: the form used when a character is somewhere in the middle of the word.
• final: the form used when a character is the last character in a word.

16 Distinguishing between “diacritic characters” (those considered actual characters in Latin scripts) and simple “diacritics” is an-
other case of inconsistent usage among the “experts.” For this paper, the word “diacritic” will generally be used, even for dia-
critics that are full alphabetic characters; for text layout purposes – complex or otherwise – the distinction isn’t relevant.

17 You’re certainly familiar with the rules for determining the correct pronunciations of Through, Though, Tough, Cough, Hic-
cough, Bough, Bought, and Lough. Right? Luckily, most folks use the modern spellings of hiccup and Loch.

18 … except for glyph widths of course. The fonts are Monotype Corsiva in the first instance and Carbon Block in the second.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 10 OF 42 ANTIKYTHERA PUBLICATIONS

Not all scripts have contextual character forms, and those that do might have few or many examples. The lowercase
Greek letter Sigma, for instance, generally is given the form σ (U+03C3), but has a final form ς (U+03C2) that is (and
must be) used at the end of a word.19 While these are both the same character in the Greek alphabet,20 each is given a
separate code point, and stored in memory and on disk as a separate character. Existing technology could automati-
cally perform such a substitution either on disk or just for display if, for instance, σ was followed by a space, but no
purpose would be served, as the current usage is firmly entrenched. The lowercase Sigma is the only instance of a con-
textual character form in Greek, although Arabic Scripts make extensive use of these.

Contextual Character Shaping (Shape Changing)
Contextual character shaping seems similar to contextual character forms, and the shaping is determined by the same
character position categories (isolated, initial, median, and final). The difference is that, rather than being different
characters, contextual shaping alters the character’s displayed form to suit its position. The changes in shape do not,
however, represent different alphabetic characters, although a computer system may display – but not store – the dif-
ferent shapes by using substitute symbols located in a suitable font.

In Arabic, for instance, the character that is more or less equivalent to the Latin “B” is ب (U+0628).

That “isolated form” is changed to several other forms when required: the ب character is written as ٻ (U+FB54) in its
initial form, ٻ (U+FB55) in its medial form, and ٻ (U+FB53)21 in its final form. Twenty-two of the twenty-eight Arabic
letters use all four contextual character forms, but only their isolated forms are stored in memory or on disk – none of
the variants are stored and all of them are used only for display.22

Another form of character alteration that looks similar to contextual character shaping is the deliberate “stretching” of
some characters in scalable fonts in order to assist with justification, but this shouldn’t be confused with Contextual
Character Shaping, which is language-related rather than layout-related. Details of such alterations are mentioned in
Full Justification on page 21 and in the reference given in footnote 1.

Symbols in Boustrophedon writing systems (see discussion on page 14) also make use of different forms.

Character Reordering and Placement

Despite the previously mentioned discrimination against the lowly vowel classes in some cultures,23 even vowels that
are stored in consonant-vowel order are displayed in vowel-consonant order in certain scripts. The phrase दिaन्@ी भाषा भाषा in
the Examples for Experimentation (No knowledge of Hindi needed) section on page 26 gives an example of this in
which the second character entered, a vowel, is displayed before the first character, a consonant. In this example, the
character reordering will be transparently handled by a properly designed system.

The term Character Reordering, however, is appropriately used only in cases where the entry order and storage se-
quence differs from the written/printed presentation. Although swapping of consonant and vowel sounds when a word
is spelled correctly occurs often – as in the word ไทย illustrated and described toward the end of the section Examples
for Experimentation (No knowledge of Thai needed) or any English word ending with “le,” (e.g. “double,” “triple,” and
similar examples), these apparent exchanges are simply part of the language, and their spelling is the writer’s responsi-
bility.

In many cases, Character Reordering behavior affects how words are sorted in a given language or script; this is ad-
dressed in more detail in Collation and Sorting on page 22.

19 With Latin keyboard remapping provided by Input Methods, these are typed using the s and w keys respectively.
20 The upper case Sigma Σ is used for both but, given that upper case letters aren’t used to end words, this isn’t surprising. Many

(but not all) Latin keyboards that are remapped will produce the capital Σ whether the capital S or W keys are used.
21 Look closely; there are two dots at the bottom rather than one.
22 The reasons for this relate to sorting, spell checking, and so forth. Still, some applications inexplicably ignore these issues.
23 See Vowel Varieties on page 9.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 11 OF 42 ANTIKYTHERA PUBLICATIONS

Illegal Character Combinations
Microsoft considers handling of “illegal character combinations” to be an element of complex text layout, noting that
“Since Thai syllables consist of a consonant optionally followed by one vowel and/or one tone mark, some character
combinations (e.g. two vowel marks in succession) are nonsensical. Thus, one of the tasks of complex script enabling
is to filter out or disallow illegal character combinations.”24

Such “help” is questionable, and seems to straddle whatever line exists between text layout implementation and auto-
correct capabilities. My experience is that Thais generally consider such things to be in the same class as an English
writer who uses a word processor’s auto-correct facility to alter “teh” to “the.”

Composite Characters
The contents of character cells containing more than one symbol are generally known as composite characters, but not
all composite characters are the same. The difference is that while some combinations are assembled “on the fly” for
display from symbols that are stored separately on disk, others are formed by some combination of symbols for which
a single preassembled replacement has been defined.

In most Latin scripts, for example, the letter ‘a’ with an acute accent (a diacritic) is both stored on disk and displayed
as the single character ‘á’ regardless of whether it was entered directly on a keyboard or via some “compose key” se-
quence (e.g. Compose + a + ') or similar feature of the operating system or application.

In other scripts, characters may be stored and transmitted separately, but still displayed in one character cell.25 In
Thai, for example, while the consonant บ and vowel ิ are considered individual letters, each of which is stored sepa-
rately on disk, they are displayed in one character cell as a composite character บ.ิ

Some implications of these differences will be discussed in “Cursor Movement and Editing Keys” below.

Ligatures (Composite Glyphs)
In the world outside computers, a Ligature is something used to bind or wrap two or more things together. In typogra-
phy, however, it refers to two or more characters that are displayed as if they were one; the combination, which is
treated as a single character cell, is not a composite character but a composite glyph. The word aesthetic could be dis-
played with a common a+e ligature as æsthetic, but if stored in that manner would fail a spell check. The differ-
ence, once again, is that æ is not a letter of the English alphabet, while an n+~ ligature, such as ñ, is an actual
alphabetic character in the Spanish alphabet. The differences affect collation sequences as well as spell
checking. Once again, some applications support stored ligatures with convoluted work-arounds.

Dead Keys
This term originated with typewriters,
and is often encountered in discussions
about the entry of composite characters.
Normally, when a key was typed, the
platen carrying the paper moved to place
the next printing position where a ham-
mer would strike. Keys intended to place
diacritics above or below another were
offset so this could happen, and designed
so that the platen roller and paper would
not move when the key was struck.
Hence, the name “Dead Key.” In the
Thai keyboard segment illustrated in Fig-

24 See the reference in footnote 5.
25 In the reference cited in footnote 5, the Microsoft FAQ refers to such character cells containing multiple elements as “piles.”

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 12 OF 42 ANTIKYTHERA PUBLICATIONS

Figure 2 – Dead Keys on a manual Thai Typewriter (circa 1970)

ure 2, the symbols on the eight “dead key” hammers in the center are offset both horizontally and vertically to permit
them to be printed above or below the character previously typed.

While in Thai and Greek, “post-fix” diacritics are typed after the
base character as shown in Figure 2, the dead keys on European
typewriters had no offset on their hammers, requiring that dead
keys for these “pre-fix” diacritics need to be entered before the
base character. Thus, software developers must accommodate
yet another set of conflicting conventions to insure the resulting
applications work according to local habits.

Symbols entered as Dead Keys are stored in memory either as
separate individual characters and only displayed together in a
cell, or stored as composite characters, replacing the individual
symbols in storage as well as the display. Most Latin composite
characters such as À, à, Ë, ë and the like are given discrete Uni-
code values for legacy reasons that are beyond the scope of this
paper. The Unicode Consortium has publicly stated, however,
that no more of these will be added in order to minimize redun-
dancy,26 since current technology can compose such characters
for display quite flexibly and efficiently.

Text Layout Direction (Writing Mode)
Text direction refers to the direction the symbols in a line of text
are laid out, but has nothing at all to do with how the data repre-
senting that line is transmitted or stored on disk. Text direction is
a characteristic of the writing system/alphabet rather than the
Language, and should be determined by the Unicode block of
whatever character has been entered. Text direction is also called
by the vague term ‘writing mode’ and is usually classified – and
not very well – as either ‘normal’ or ‘RTL.’

“Normal” typically means that a line of text is displayed or
printed horizontally from left to right; RTL means that the text
runs from right to left. The expected acronym LTR is seldom en-
countered and text direction is generally never mentioned or con-
sidered unless it is RTL. See the note about such inconsistent
perceptions to the right.

Of course, some languages can also be written vertically, so we
would be forgiven for expecting some acronym like TTB (top to
bottom), but that doesn’t seem to be the case. Instead, such lan-
guages/scripts are referred to as ‘Asian.’ Vertical text layout is in-
deed usually Asian, but any suggestion that ‘Asian’ languages in
general are written vertically reflects at least some level of igno-
rance. Scripts written from top to bottom are apparently even
less “normal” than those written from right to left.

26 One simple reason is that if one has five base characters that can accept any of five diacritics, a set of additional composite
characters would total 5*5, or 25, whereas if the characters can be assembled for display as needed, no additional characters
would be needed but the basic 5+5, or 10. Obviously, this calculation can get more interesting, but you get the idea.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 13 OF 42 ANTIKYTHERA PUBLICATIONS

Perceived Cultural Issues
Why is left-to-right text considered “normal” and
not even given its own acronym?

And why aren’t top-to-bottom scripts given their
own acronyms? Neither of these two questions
has a good answer.

And why, as some wonder, do writers using Eng-
lish and other western scripts get the prime real
estate (the seven-bit codes) at the very beginning
of the Unicode block tables?

The answer to this is more a matter of technical
reality than cultural insensitivity. The modern
computer era began and was primarily driven by
English speakers during and immediately after
World War II. The result is that the world’s oper-
ating systems, kernels, command lines, program-
ming languages, APIs and so forth continue to
require what we affectionately remember as
“lower ASCII” from the not-so-distant past.

This is why even the nationally sanctioned “offi-
cial” fonts of most countries include Latin
scripts as well as their country’s own.

Menu options and error messages can now be
routinely presented in host languages without a
great deal of pain using Locale definitions, but
attempts over the years to translate programming
language key words generally offer far too few
advantages to justify the effort involved. Sharing
source code across borders and dealing with dif-
ferences in paired symbol usage are just a few
difficulties.

Well designed internationalized applications,
along with UTF-8, really insures that actual
users of computers can be provided with all that
these devices have to offer.

Most apparent ‘cultural’ issues are differences in
perspective that can be and are being accommo-
dated through better generalization, although
many such issues still remain.

Given the current state of the art, there should be no need whatever for a user to explicitly select right-to-left or any
other direction; directionality is a characteristic of a particular script and can easily be determined from the Unicode
block of any alphabetic character entered. If desirable, a user should of course be able to alter the direction.

In order to present a more rational approach to discussing text direction in the examples that follow, several new
acronyms will be introduced.27 These are simply:

• LRTB: Left-to-Right; Top-to-Bottom. Examples include almost all European and Southeast Asian scripts.
This layout is becoming a common alternative used with many vertical scripts as well.

• RLTB: Right-to-Left; Top-to-Bottom. Examples are middle-eastern scripts such as Hebrew and Arabic.
RLTB layouts, by the way, preceded LRTB layouts in history, giving them a prior claim to ‘Normal!’

• TBRL: Top-to-Bottom; Right-to-Left. This acronym reflects a change in precedence from horizontal to verti-
cal; examples of traditional TBRL scripts include many Chinese, Japanese, and Korean scripts, although not
all scripts used by even those languages are laid out vertically. Horizontal left-to-right layouts are becoming
ever more common with globalization.

• TBLR: Top-to-Bottom; Left-to-Right. An example of a script using a TBLR layout is Mongolian.

Other interesting text layout directions include Boustrophedon, Reverse Boustrophedon, and Spiral, none of which are
used in any contemporary language unless intended as decorative elements.

Boustrophedon writing examples are horizontal, but
change direction as each line is presented, reversing the
character shapes as well. Actual Boustrophedon writing
isn’t normally used with the Latin alphabet as shown on
the right, but that seems the best way to illustrate it for
non-archeologists who combine the Boustrophedon layout
with often obscure character sets to write scholarly arti-
cles about – what else? – ancient Boustrophedon writings in Safaitic, Sabaean, early Greek & Latin. The undeciphered
Rongorongo inscriptions found on Easter Island are another, but unrelated, example of a Boustrophedon layout.

Reverse Boustrophedon, simulated on the right, is quite
similar, but the characters in the alternating lines of text
are inverted instead of reversed. The etymology of the
term Boustrophedon derives from the alternating path
taken by an ox while plowing a field. No acronym is used
for Boustrophedon, since it isn’t now, and will not likely ever be, supported by anything other than graphics software.

Spiral layouts are also used in the Linear-A syllabic script used in at least one
dead language – believed most likely to be Hittite, or an early form of one of
the Semitic or Greek languages. The Phaestos disk, illustrated on the
right, is the primary example of such writing although, since it has never
been convincingly translated, some scholars dispute whether it is read
from the inside out – the obvious assumption – or from the outside in.
Spiral layouts also aren’t given their own acronym, although its tempting
to use SPRL, since the final RL will introduce the same sort of confusion
promoted by the common pairing of RTL with CTL, rather than LTR.

Interestingly, none of the extant examples of spiral layout seem to have
any remaining space. Many assume the ancients simply stopped writing
when they ran out of space, but I prefer to think of these as very early ex-
amples of full justification.

27 New obscure acronyms, after all, are a traditional means by which technologists simulate progress and pretend to innovate!

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 14 OF 42 ANTIKYTHERA PUBLICATIONS

Figure 4 – Reverse Boustrophedon Text Layout

Figure 3 – Boustrophedon Text Layout

Figure 5 – The Phaestos Disk

Mixed Text Directions – Bidirectional Text
Although many documents are written with just one language and, therefore, one script and text direction, any modern
system should be able to transparently support the use of multiple languages without requiring user intervention. When
mixing text segments having different directionality in the same document however, a number of interesting issues
arise. These issues – and their typical solutions – depend on a variety of factors which are discussed (again informally)
in this section.

Default Paragraph Directionality (Primary Text Direction) in Text with Mixed Directions
Even in the case of side-by-side or interleaved translations of one language to another, or commentary in one
language regarding text in another, it is usually the case that a document will be written with one language being
considered as the primary. This language is known as the Document Default Language, and the direction of the
script used for that language is then considered the Paragraph Default. At least conceptually, the primary, or
document default, language is not at all related to the default language of the operating system, the application,
or any other user interface in use, although these distinctions are commonly blurred in applications designed
without multilingual use in mind.

It is more practical, however, to ignore the document and consider each paragraph to have its own primary lan-
guage and, therefore, default direction, since that offers the most granular control of text layout. The default
Paragraph Direction will of course depend on the document’s default language.

Commonly used applications vary considerably in their handling of mixed Directionality, and we’ll discuss that
subject in later Notes in this series but, for now, it is sufficient that you are aware of that.

The most interesting circumstance is the pairing of horizontal and vertical text segments, shown in the band on
the right side of the page, where the primary paragraph language is Chinese. Sections of the normally horizontal
English text that are included will also be laid out vertically, usually with the characters rotated as shown here,
although this can vary depending on the actual content. Thus, LRTB segments are transformed into simply TB
segments. If the non-Chinese text happened to be a normally RLTB language such as Arabic, it would by the
same convention, be arranged as simply BT. (The Chinese text is from the opening of the United Nations Uni-
versal Declaration of Human Rights. See Footnote 3.) Chinese and Han Script will be discussed in a separate
Design Note 7.

To say that there are technical difficulties with mixing horizontal and vertical text, however, is a bit simplistic
and misleading. The primary difficulty is determining what any such technical solution ought to accomplish –
what a resulting mixture should look like on paper in order to make sense for an average reader. For this and
various other reasons, the use of vertically oriented text layouts is gradually disappearing, with the Chinese gov-
ernment itself driving that change as early as 1956.

Page margins generally remain the same where scripts having multiple directions are mixed, unless there is some
specific design need, which is usually unrelated to simply LRTB-RLTB considerations.

Cursor Movement when Entering or Editing Text in Bidirectional Paragraphs
If handled incorrectly by an application, cursor movement or character selection with a mouse during bidirec-
tional text entry can be quite disconcerting to a user. Confusing cursor behavior during text entry is most often
the result of incorrectly identifying transitions from one script to another. An example of this is provided in the
section titled Typing “This is English and שפה עברית is Hebrew” – a step-by-step illustration in Design Note #5,
Exploring Bidirectional Text Entry. Transitions between different text layout directions can also occur in para-
graphs in which only a single language is used; many right-to-left languages display numeric characters from left-
to-right. An example of how this is handled is provided in Figure 9 – Right-to-Left Ruler with Mirrored Tab
Settings and its accompanying explanation on page 19.

The table below summarizes the actions of various keys during cursor movement, character entry, and editing in
paragraphs with different default text layout directions:

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 15 OF 42 ANTIKYTHERA PUBLICATIONS

人
人
生
而
自
由,
在
尊严
和权
利
上
一
律
平
等
。

L
A

T
IN

 IS R
O

T
A

T
E

D
 IN

 P
R

E
D

O
M

IN
A

N
T

L
Y V

E
R

T
IC

A
L T

E
X

T B
L

O
C

K
S.

Cursor Movement Keys

Home Key

in LRTB Layouts
The Home key will move the cursor to the beginning of
the line, which is the left-most position.

in RLTB Layouts
The Home key will also move the cursor to the begin-
ning of the line, which is the right-most position.

End Key

in LRTB Layouts
The End key will move the cursor to the end of the
line, which is the right-most position.

in RLTB Layouts
The End key will also move the cursor to the end of the
line, which is the left-most position.

→ Key (Forward Key)

in LRTB Layouts
The → key will move the cursor right (in the direction
indicated by the arrow) to the next character cell.

in RLTB Layouts
The → key will also move the cursor to the next char-
acter cell, but in the case of right-to-left scripts, that
character cell is on the left.

← Key (Reverse Key)

in LRTB Layouts
The ← key will move the cursor left (in the direction
indicated by the arrow) to the previous character cell.

in RLTB Layouts
The ← key will also move the cursor to the previous
character cell, but in the case of right-to-left scripts,
that character cell is on the right.

Character Entry and Editing Keys

← Backspace Key

in LRTB Layouts
The ←Backspace key will delete the character to the left
of the cursor, the direction indicated by the arrow.

in RLTB Layouts
In spite of the left-facing arrow on the Backspace key
of many keyboards, this will delete the character to the
right of the cursor.

Delete Key

in LRTB Layouts
The Delete key will delete the character to the right of
the cursor.

in RLTB Layouts
The Delete key will delete the character to the left of
the cursor.

Tab→ Key (Forward)

in LRTB Layouts

During text entry or editing, the Tab→ key will insert a
usually invisible character that will move the cursor to a
character cell beginning at the next tab stop to the right.
The Tab→ key is also used in some applications to
move the cursor to the “left” or “next” cell in layout
structures such as tables.

in RLTB Layouts

During text entry or editing, the Tab→ key will usually
do nothing, but it is used in some applications to move
the cursor to the “right” or “previous” cell in layout
structures such as tables.

←Tab Key (Back) in LRTB Layouts

During text entry or editing, the ←Tab key will usually
do nothing, but it is used in some applications to move
the cursor to the “previous” cell in layout structures
such as tables.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 16 OF 42 ANTIKYTHERA PUBLICATIONS

←Tab Key (Back)

… continued
in RLTB Layouts

The ←Tab key will insert a usually invisible character
that will move the cursor to a character cell beginning
at the next tab stop to the right. See the comments be-
low regarding tab stops in documents having bidirec-
tional layouts.

Comments: The motion of the → and ← cursor keys seems particularly contrary unless they are
referred to by names similar to the Fwd and Rev keys seen on media players; such symbols can
only be considered “intuitive” in the Microsoft sense of the word – which is to say it’s been done
that way for so long users’ habits have become stratified. That’s just how it’s done. Implementa-
tion of Tab behavior in right-to-left text, like that of the cursor behavior described above, varies
considerably across applications. See Rulers, Guides, and Tabs in Text with Mixed Directions on
page 18 for illustrations.

Paired Symbols in Text with Mixed Directions
Most written languages use a variety of paired delimiter symbols, such as parentheses, braces, brackets, and quotation
marks. With parentheses – to use one such pair as an example – the first of the symbol in left-to-right scripts is typi-
cally referred to as either an ‘opening parenthesis’ or a ‘left parenthesis.’ The second of the pair is correspondingly
known as a ‘right parenthesis’ or a ‘closing parenthesis.’28 Other paired symbols are similarly named. Most scripts,
whether left-to-right or right-to-left, use identical Unicode characters for the ‘opening’ parenthesis (U+0028) and ‘clos-
ing’ parenthesis (U+0029) regardless of their position on the keyboard.

Such seemingly minor variations in naming reflect the sorts of per-
spective differences that a user needs to be aware of when mixing
scripts within a single document, particularly when Input Method
Editors are used to dynamically switch keyboard layouts. Three
common pairs of such delimiters – the Parentheses, Curly Brack-
ets, and Square Brackets – are shown in Figure 6 as they are laid
out on the upper right of a typical “western” keyboard layout.29 In
the case of a left-to-right layout such as this, whether the phrase
“left parenthesis” or “opening parenthesis” is used makes no difference when describing the (key.

So what about right-to-left scripts such as Hebrew or Arabic? As
can be seen in the equivalent keyboard segment on the right, the He-
brew perspective is that the key combination of Shift + 9 is likewise
used as an opening parenthesis, and the Shift + 0 as the closing
parenthesis, regardless of what the symbol looks like. Thus, when
mixing Latin and Hebrew scripts by switching keyboards, an identi-
cal perspective applies. The same perspective carries through to the
other paired characters on the Hebrew layout, including the ‘<’ and
‘>’ symbols that are not shown in the illustration.

This difference in perspective is not reflected in all right-to-left language keyboards, however; many, though not all,
Arabic keyboards have the paired delimiters in the same locations as on Latin keyboards.30 This perhaps reflects the
wide variety of languages that use the Arabic script. Choose your keyboard layouts wisely! More details on using bidi-
rectional data with paired delimiters will be presented in Design Note #5, Exploring Bidirectional Text Entry.

28 The Unicode Consortium originally used the names ‘opening parenthesis’ for the ‘(‘ character U+0028 and ‘closing parenthesis’
for the ‘)’ character U+0029, but later adopted the more neutral ‘left’ and ‘right’ terms as the official names, leaving ‘opening’ and
‘closing’ as alternate names.

29 Many languages also share these and other paired symbols, but place them in different keyboard locations.
30 Both forms can be found on Amazon, for instance, but there is no mention in their descriptions that this difference exists.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 17 OF 42 ANTIKYTHERA PUBLICATIONS

*

8

(

9

)

0

_

-

+

=
←

I O P {

[

}

]

Figure 6 – English (US) Keyboard Layout Segment

*

8

)

9

(

0

_

-

+

=
←

I
ן

O
ם

P
פ

}

]

{

[

Figure 7 – Hebrew Keyboard Layout Segment

Quotation marks, another common symbol pair, appear in many interesting varieties. What the French call guillements
(« and »), are used in many languages.31 Danish and Hungarian writing use the same symbols, but in reverse; the »
marks the beginning of a quotation and the « indicates the ending. Similar, though not identical symbols (《 and 》) are
used in Korean and simplified Chinese, but are different code points.32

In order to avoid headaches, we’ll ignore any discussion of how paired character matching algorithms33 are affected by
the different open-close-left-right perspectives. And we certainly don’t want to consider what implications there might
be of exchanging the / and \ keys, which is left for the reader to ponder.

Rulers, Guides, and Tabs in Text with Mixed Directions
Perspective in the treatment of ruler displays, guides, tab stops, line indents, and the like is somewhat analogous to that
of paired parentheses, where the└ symbol may be viewed as representing a “left tab stop” or a “forward tab stop,” i.e.
one continuing the left-to-right motion of the text being displayed. In a right-to-left paragraph, however, it is the
┘symbol or a “right tab stop” that represents forward motion.

Common conventions for tab stop symbols should help: a user can view the vertical bar on the tab marker as the loca-
tion where placement of character cells will resume after the Tab key is pressed. The bottom right angle “hook”
should always point in the direction that character cells will be laid out from that point.

Unfortunately, many applications treat these various guides inconsistently. Some consider them as Page-centric rather
than Paragraph-centric or, even worse, as being dependent on the installation’s user-interface language; many applica-
tions require elaborate configurations to handle bi-directional text on a paragraph basis, and some simply ignore the is-
sues involved with handling multiple text directions. Documentation for many products will often provide clues to the
level of support for mixing text directions.34

Before discussing decimal tabs, which have their own unique issues, we should begin with the more common left,
right, and center tabs, since proper handling of these seems to be rather straightforward.

Left, Right, and Center Tab Stops

Assume that the Default Language of a document uses a left-to-right Script; this implies that, unless explicitly changed
by a user, the default paragraph direction is also left-to-right. For this example, assume also that the default paragraph
style uses a customized set of tab stops. The following illustrates how these tab stops would be mirrored as defaults for
any independent right-to-left paragraphs in that document:

The user’s defined tab settings are shown in Figure 8, and listed in tab setting dialogs as follows:
0.50" Left Text continues Forward (right) from this point.

2.00" Centered Text spreads in both directions around this point.
3.80" Right Text continues in Reverse (left) from this point.

These tab settings are, of course, measured from the left
margin – the LRTB point of reference.

31 Including Armenian, Azerbaijani, Basque, Belarusian, Catalan, Swiss, German, Greek, Italian, Latvian, Norwegian, Persian,
Portuguese, Russian, Spanish and Ukrainian. In Finnish and Swedish, the » is sometimes used to open and close a phrase.

32 The Unicode values for these are « (U+00AB), » (U+00BB), 《 (U+300A), 》(U+300B). The latter two are ‘full width’ symbols to match
the fixed width of vertical columns of symbols; when primarily written horizontally, symbol use is more flexible.

33 e.g. where placing the cursor on one symbol of a pair in many programming editors causes its twin to be indicated in some
fashion.

34 Although LibreOffice, for example, supports multiple interface languages, it has only minimal support for mixing text direc-
tions. The help in its Writer component says, for instance, “Initially the default tabs are shown on the horizontal ruler. Once
you set a tab, only the default tabs to the right of the tab that you have set are available.” Use of the phrase “to the right of the
tab” is a clear indication that Writer assumes a predominantly left-to-right world as many applications do.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 18 OF 42 ANTIKYTHERA PUBLICATIONS

Figure 8 – Left-to-Right Ruler with Tab Settings

Where the Default Paragraph Direction is right-to-left in
a document that is primarily left-to-right, the Tab Set-
tings would be mirrored, as seen here:

0.50" Right Text continues Forward (left) from this point.
2.00" Centered Text spreads in both directions around this point.

3.80" Left Text continues in Reverse (right) from this point.

With right-to-left “exception” paragraphs in this example document, the default tab direction settings should be re-
versed, and measured from the right margin. The tab at 0.5" remains a “forward tab,” but in this case needs to be
transformed to a “right tab” in order to correctly mirror the left-to-right settings.35

It must be noted that some mainstream applications consider Tabs within text to be white space (which is correct), but
also interpret such Tabs as Latin characters (which they are not) due to their 0X09 code point.

Decimal Tab Stops

Because numbers are generally displayed from left-to-right even in languages that are otherwise laid out in the oppo-
site direction, mirroring of tab settings presents more interesting challenges when those settings include decimal tab
stops. Figure 10 illustrates a left-to-right layout with three tab stops:

0.30" Left Text continues Forward (right) from this point.
2.40" Decimal Digits continue in Reverse (left) from this point

until the decimal point is entered, after which
the digits continue Forward (right) until the number
entry has been completed.

2.80" Left Text continues Forward (right) from this point.

The small red triangles indicate the points at which the
user pressed the Tab key while typing the phrase. Af-
ter “3.” was typed, the tab key moved the cursor to the 2.40" position and the numbers were entered right-to-left until
the decimal key restored its normal left-to-right direction. When the tab after the final “8” was typed, the cursor
moved to the 2.80" position, at which point the user typed “in …,” etc.

Transformation of decimal tab settings for use in mirrored right-to-left paragraphs is a bit more complex than the sim-
ple swap and direction reversal described above. As with the earlier example, the 0.3" and 2.8" tabs are simply con-
verted from Left Tabs to Right Tabs but, in this example, the decimal tab value for the RLTB Arabic text would be
converted from 2.40" to perhaps 1.20" as shown in Figure 11 below.
0.30" Right Text continues Forward (left) from this point.
1.20" Decimal Digits continue in Forward (left) from this point

until the decimal point is entered, after which
the digits continue Reversed (right) until the number
entry has been completed with the “$” entry.

2.80" Right Text continues Forward (left) from this point.

Assuming that the values expected to be displayed in the
mirrored layouts are similar in terms of the quantity of
digits expected before and after the decimal point,36 the
relative distance between the tab stop preceding the decimal location and that following it need to be swapped, but
things aren’t that simple. In the left-to-right example, the larger distance we wish to swap from one side to the other is
not the distance from the 0.3" tab to the 2.4" tab, but rather the average distance between the endings of whatever text
begins at the 0.3" tab to the 2.4" tab. In Figure 10, this would be from about 0.85" to the 2.4" tab stop.

35 The user may need to alter these settings for various reasons, or in specific paragraphs, but in many cases, a well-designed in-
terface will preclude such a need.

36 Currency, as shown here, assumes a greater possible number of integer units than decimal units, but the same reasoning would
apply for different value types. Remember too that there are a variety of locale-dependent delimiters used in numbers (not ap-
plicable in this example), and a variety of currency indicator placements (seen here with the $ being placed after the value).

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 19 OF 42 ANTIKYTHERA PUBLICATIONS

Figure 9 – Right-to-Left Ruler with Mirrored Tab Settings

3. He won $90,123,456.78 in the Lottery.
 ▴ ▴ ▴ ← tab keys pressed

Figure 10 – Left-to-Right Ruler with a Decimal Tab Setting

 في اليانصيب90،123،456.78فاز $
 tab keys pressed → ▴ ▴

.3
 ▴

Figure 11 – Mirrored RTL Ruler with a Decimal Tab Setting

Without delving into how this is calculated (because, after all, such an arbitrary result can only serve as a useful start-
ing point that will likely need to be fine tuned by a user depending on a particular combination of languages, font sizes,
and other factors), we can refer to the original 0.3", 2.4" and 2.8" tabs respectively as α, δ, and ω. The mirrored deci-
mal tab would then be set at 2.25 x (ω-δ) + α, or, in this case 1.20".

More precise layouts would likely be handled by tables or grids that have been available in most word processors for
decades. Note that similar mirroring considerations also apply to bullets, numbering, etc.

Detecting Primary Text Direction in Paragraphs
In dedicated multilingual applications, a convention evolved at least twenty-five years ago that the Primary Text Direc-
tion for a given paragraph should be determined by the initial character of the paragraph, but the meaning of “the ini-
tial character,” which meant quite narrowly the first alphabetic character, was often lost when that convention was
eventually adopted in more general purpose editors and word processors.

The term “alphabetic character” does not include shared values (e.g. common punctuation as well as the space and tab
characters) in what is still called the lower ASCII range. A good example of this can be seen in Figure 11, where the
first “character” (the numeric character “3”) is shared across many scripts. The paragraph, clearly intended as right-to-
left Arabic, is mistakenly set as left-to-right by several applications when such a decision should be deferred until an
actual alphabetic character is encountered.

Text Alignment in Documents with Mixed Directions
A common default for the beginning of text lines in left-to-right layouts such as those shown
in Figures 8 and 10 is the left margin. This is reflected in, and often controlled by, icons such
as those shown in Figure 12 on the right.

Unlike the settings for tab stops, such choices are not subject to differences in perspective;
left and right, after all, have the same interpretation regardless of language or culture. Fur-
thermore, two of the alignment choices shown in Figure 13 would be interpreted the same
regardless of perspective.

What is often overlooked in some application interfaces is how paragraph alignment defaults
should be handled if the primary text direction of a paragraph differs from the document’s
primary text direction. When such a change is detected, a user should reasonably expect the text alignment in use to be
mirrored as well. If the default paragraph direction is left-to-right, for instance, and the default alignment for that para-
graph is left, the alignment should be mirrored (i.e. set to be right-aligned) when the paragraph direction is changed.

Transitioning between Text Directions within Paragraphs
Smooth transitions for users entering text in bidirectional paragraphs can be disrupted when the default Script (and
therefore directionality) of the current paragraph is detected improperly. A detailed example of how this commonly
occurs is presented in Design Note #5, Exploring Bidirectional Text Entry.

Justification
Justification describes not the direction in which the text is laid out, but how it relates to the page margins. The choices
given for justification in most contemporary applications are Left, Center, Right, and Full, as shown in Figure 12, but
these terms actually represent two general classes: Ragged and Full.

Ragged Justification
The term Justification is often used rather loosely to indicate which margin any lines of displayed text are aligned
against. Most lines of text in this document, for instance, begin at the left margin and, while such a layout is colloqui-
ally known as “left justification,” it is more correctly known as “flush left” and/or “ragged right” – ragged because the

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 20 OF 42 ANTIKYTHERA PUBLICATIONS

Figure 12 – Left Align

Figure 13 – Bidirectional

lines of text can be and often are of different lengths. Text may be and is often set either “ragged left” or “ragged
right” regardless of a paragraph’s default layout direction.

Full Justification
Justification, in its more formal use, is altering a line of text in order to extend it so that the lines in a paragraph are
laid out to align evenly (or appear to)37 against both margins. The exception to this is that the last line in a paragraph
will not be altered in cases where it is short enough to produce humorous results if so extended.

There are several techniques used by software to justify text. The simplest is to stretch the spaces between words to
extend the line length sufficiently to meet the ending margin. Slightly more pleasing38 results can be obtained by also
adding slight increases to the space between the displayed character cells – but not between characters as some sources
incorrectly suggest. This is one example why distinguishing between characters and character cells is important. Spa-
ces that would otherwise appear at the beginning or ending of lines then need to be suppressed in any justified output.

Justification of lines in Thai sentences, incidentally, must always accomplished by adjusting the spacing between let-
ters, since Thai doesn’t separate words with spaces. Spaces are only used to separate sentences from each other.39

Another technique involves subtle40 ‘stretching’ or ‘shrinking’ the widths of individual character cell contents (selective
contextual shaping) to minimize the need for extending space widths excessively.

The best results when applying full justification are obtained when the paragraph is considered as a whole, rather than
simply on a line by line basis. Further discussion is out of scope for a document like this, but searches for the follow-
ing justification algorithms are recommended for those with an interest:

• Knuth and Plass: 1981; This is the same Donald Knuth any good programmer should already know.
• Hochuli and Kinross: 1996;
• Hàn Thé Thành: 1999; See footnote 37 for one interesting link.
• Haralambous and Bella: 2006;
• Elyaakoubi and Lazrek: 2010; 41

Kashideh

An interesting alternate technique for obtaining full justification is known by the term Kashideh (کشیده) which means
“extended” or “stretched” in Persian. Kashideh layout can be used for justification in a variety of languages that use
Arabic scripts, including Persian, Urdu, Pashto, and Jawi, as well as with Devanagari scripts in languages like Hindi,
Sanskrit, Bengali, Nepali, etc. See Figure 16 – Arabic, before and after Kashideh Justification on page 28 for a de-
tailed comparison of ragged right and Kashideh justification.

Perhaps this form of justification does qualify as “complex,” although “elegant” would seem to be a better term.

Word Breaks, Line Breaks, and Hyphenation
Although the majority of contemporary scripts use spaces between words, and at least some form of punctuation to
delimit sentences, some do not. As mentioned earlier, for example, Thai uses no spaces between words. This can be
seen in Figure 14 – Thai, without and with full Justification on page 25. Observe that the first space is only seen be-
tween the words อิสระ and เรา about two-thirds of the way into the first line, which is the break between the first two

37 There is actually a difference between having character edges aligned against the margin and merely “appearing” to be aligned
against the margin edges; see http://www.tug.org/TUGboat/Articles/tb25-1/thanh.pdf for a discussion.

38 This is of course a subjective term, but is based on centuries of typography traditions across many cultures and technologies.
39 See Figure 14 – Thai, without and with full Justification on page 25 for an example.
40 There are, of course, often some “not-so-subtle” differences in various designers’ interpretations of “subtle.”
41 See http://quod.lib.umich.edu/j/jep/3336451.0013.105?view=text;rgn=main to download their article in the Journal of Elec-

tronic Publishing (v13#1).

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 21 OF 42 ANTIKYTHERA PUBLICATIONS

sentences.42 The detection of the line break causing the large space at the end of the first line occurs after the whole
word มี, since the following word ความ won’t fit on the line.

The mechanisms by which this occurs, while considered by some to be a Complex Text Layout function, are beyond
the scope of this document, but in most modern systems are provided by lower level services and not by higher level
applications such as word processors.

Collation and Sorting
Collation and Sorting is determined for the primary user interface by the Locale setting but, as noted earlier, well-de-
signed applications make no assumption that such choices have any inherent relation to the choice of primary language
in any particular document other than perhaps setting a default starting point for new documents.

Collation and Sorting is only tangentially related to what applications refer to as Complex Text Layout, and is more
properly in the Language or possibly the Script domain, but the sorting orders in many languages don’t always follow
what is commonly called “alphabetical order.”

Depending on the language, Composite Characters may or may not be considered when sorting. In German, the dis-
played character ä, although stored as an independent character, is considered simply a variant of the base character a
(i.e. an a with a diacritic umlaut) for purposes of sorting. The ä in Swedish, however, is actually the second last letter
in the Swedish alphabet between å and ö (none of which therefore are composite characters) and sorted accordingly.

In English, vowels are distributed (scattered?) among the consonants in the alphabet, with a, e, i, o and u being the 1st,
5th, 9th, 15th, and 21st characters respectively. In other languages the alphabetic vowels – whether actual characters
or dead key diacritics – are considered a separate sequence. In Hindi, the Vowel order (अ आ इ ई उ ऊ ऋ ए ऐ ओ
and औ) is distinct from and comes before the Consonant order (क ख ग घ ङ च छ ज झ ञ ट ठ ड ढ ण त थ @ ध न
प फ ब भ म य र ल व श ष स and a) and the sorting reflects this.43 In Thai, the situation is reversed; the vowels (ะ ั า
ำา ิ ี ื ึ ุ ู ฺ เ แ โ ใ ไ and ๅ) are grouped together at the end of the alphabet, but the sort order considers each vowel af-
ter every individual consonant.44

In Korean, the sort order is based on the Jamo components (more or less equivalent to what we call “letters”)45 within
each displayed “syllable.” The exact order for these, though, differs between North and South Korea.

A FINAL REMINDER

At the beginning, we stated “This document is meant to be an informal – and therefore sometimes less than
precise – introduction ...” etc. A much more detailed discussion of all the subjects, Scripts, and Languages
presented here is provided in the Unicode Standard (version 10, dated June 2017). The 1,044 page pdf ver-
sion of this standard can be downloaded from:

 http://www.unicode.org/versions/Unicode12.0.0/UnicodeStandard-12.0.pdf.

With the background and examples provided in this introduction, the Unicode Standard and its various other
related publications should provide any additional detail you may need for whatever specific Languages and
Scripts you may need to support in order to handle the data for which you are responsible.

The next section will present examples of CTL attributes in the context of actual scripts and languages in order to of-
fer a better “feel” for the variety of behavior you will encounter when dealing with different Scripts.

42 For the curious, the word เรา that appears at the beginning of all three sentences in this selection translates to “we.”
43 It’s not quite that simple in practice, but this document is intended only as an introduction.
44 Thai sorting is even more interesting in practice, but you get the idea. Note that the intermingling of both full character and the

upper and lower diacritic vowels indicates that the only difference between them in Thai is display placement.
45 See the section titled “Korean Script examples using 한국어 (the Korean Language)” beginning on page 30 for a more com-

plete explanation.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 22 OF 42 ANTIKYTHERA PUBLICATIONS

http://www.unicode.org/versions/Unicode12.0.0/UnicodeStandard-12.0.pdf

CTL EXAMPLES IN PRACTICE

Disclaimer
The examples provided in this document are not intended as a comprehensive means of testing of what are inexplica-
bly known as Complex Text Layout capabilities, but are merely intended as a means to determine if such capabilities
exist in a particular environment and how well they are supported. The primary intent is to permit those with little or
no knowledge of the languages requiring such capabilities to explore how and under what conditions those capabilities
function when working properly.

Of course, it is necessary to insure that a font containing the required character glyphs is present on whatever system is
being tested. Since both contemporary operating systems and applications often perform both font substitution as well
as glyph substitution – often without notification, warning or any apparent rationale, care must be taken to select an ap-
propriate font for these examples so that CTL capabilities rather than font or glyph substitution capabilities are being
tested.46 If these tests are run within an application, any CTL processing should be turned OFF to begin with.

It should also be noted that all comments refer to Unicode used with UTF-847 operating systems and applications; ex-
cept for very arcane usage requirements, this combination should be viewed as “standard” for modern systems.

There are a number of ways to enter these characters. If there is an “input method” active (such as iBus), and config-
ured for Thai using the keyboard layout specified, the character combinations can be typed on a Latin keyboard using
the keys shown immediately below each sample. The “บิ่” ” in column 1, for instance, is typed as “[bj”. This, of course,
requires that the active font not only contains the Thai script in the correct Unicode block, but reports that properly via
its internal tables (see footnote 46). The two lines below the Latin equivalent keys indicates the Unicode values and
their decimal equivalents, and can be used as described in the Character Entry Methods section that begins on page 35.

Common Examples of Mixing Numeric Scripts

Thai Script, discussed on page 24, has its own numeric
characters. In the Thai 50 Baht note on the left, the de-
nomination is shown with the Thai numerals ๕๐ on the
lower left and Latin/Arabic numerals 50 on the top left.

The serial number in Thai Script [๓ ก ๗๑๗๕๐๕๖] is on
the upper left, while the Latin version [3 A 7178086] is
on the lower right.

Note that the Thai ก and Latin A are the first letters of
their respective alphabets. They are not, however, equiva-
lent characters, the ก being a consonant with a “g” sound.

Devanagari Script discussed on page 26 has its own nu-
meric characters as well. In the Nepalese 500 Rupee note
on the right, the denomination is shown with the numer-
als ५०० on the lower left and 500 on the lower right. The
serial number, ३२६३३२, is given only in Devanagari nu-
merals.
The Hindi Language of India also uses Devanagari Script
but, since 1949 the Indian Rupee has not used Devana-
gari numerals on its currency.48

46 See the document “Evaluating Fonts for use in Multi-Lingual Documents” for more detailed information on choosing an ap-
propriate font based on the particular Scripts to be intermingled in any particular document.

47 See the document “Exploring UTF-8” (available at www.AntikytheraPubs.com/i18n.htm) for details of UTF representations.
48 Well, not officially. See https://thewire.in/81737/madras-hc-questions-legality-of-devanagari-script-on-rs-2000-notes/ et.al.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 23 OF 42 ANTIKYTHERA PUBLICATIONS

https://thewire.in/81737/madras-hc-questions-legality-of-devanagari-script-on-rs-2000-notes/

THAI SCRIPT EXAMPLES USING ภาษาไทย (THE THAI LANGUAGE)
Brief Comments about Thai
In addition to the Thai language itself, Thai script is also used for Pali, some versions of Sanskrit, and other minority
languages.
The Thai language alphabetic characters, as well as its diacritic vowels and tone markings, are defined in Unicode
Block U+0E00-0E7F under Southeast Asian Scripts.49 Thai is written from left-to-right, and top-to-bottom (LRTB),
and there are no “capital” or small” letters; the Shift key is used in Thai to type different characters.

Thai uses no spaces between individual words, but its syllables are constructed in a precise enough fashion that identi-
fication of word and syllable breaks is fairly straightforward, making hyphenation and line breaking equally straightfor-
ward. Spaces delimit sentences in Thai, and Thai characters are not generally connected to each other in print unless
the intent is decorative, such as with posters, general advertising, or similar uses.

Thai has its own set of digits – the 0 to 9 equivalents are: ๐ ๑ ๒ ๓ ๔ ๕ ๖ ๗ ๘ ๙ – but generally uses the shared numer-
als defined in the Latin code block (see Thai currency example on previous page). On computer keyboards with sepa-
rate numeric keypads, the Thai convention is that the keys on the main area of the keyboard produce the Thai digits ๐
to ๙, while those on the numeric keypad produce the “western/European/Indian/Arabic” characters 0 to 9.

Examples for Experimentation (No knowledge of Thai needed)

The recommended keyboard mapping for these examples is that defined by TIS-820.2538,50 although the Kedmanee
keyboard layout is very similar and can be used if TIS-820 is not available. Latin key presses used with the TIS-820
layout are shown directly below the Thai characters; the following lines provide the Unicode hexadecimal values and
their decimal equivalents for use with single character entry methods.
In the center two columns (4 and 5) of this table are two similar-looking Thai consonants (บ and ป) that school chil-
dren call Baw-Baimai (Baimai means leaf in English) and Bpaw Bplah (fish); the only difference in appearance be-
tween these characters is that the right side extends higher in the บ than in the ป.

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8

Vowel + Tone51 Mai-ek Tone “i” vowel Baw (leaf) Bpaw (fish) “i” vowel Mai-ek Tone Vowel + Tone

บิ่” บ่” บิ บ ป ปิ ป่” ปิ่”
[b j [j [b [x x b x j x b j

U+0E1A
U+0E34

 U+0E48

U+0E1A
 U+0E48

U+0E1A
 U+0E34

U+0E1A U+0E1B U+0E1B
 U+0E34

U+0E1B
 U+0E48

U+0E1B
U+0E34

 U+0E48

3610d, 3636d,
3656d

3610d, 3656d 3610d, 3636d 3610d 3611d 3611d, 3636d 3611d, 3656d 3611d, 3636d,
3656d

Progressing outward from the center, the บ and ป characters appear again in columns 3 and 6 with a diacritic vowel ิ,
one of several that are positioned above their associated consonant. Note that in column 3, the vowel is in its normal
position. In column 6, however, it is shifted to the left to accommodate the ป character’s right side ascender.52

49 See http://www.unicode.org/charts/PDF/U0E00.pdf; a full index of Unicode charts is at http://www.unicode.org/charts/.
50 2538 is the Thai year corresponding to 1995 in most calendars. See this keyboard layout on page 37.
51 This is an example of diacritic ordering or ranking. In Thai, a diacritic vowel “outranks” a tone mark, and is thus placed closer

to the base character. Very few applications correct such entry errors.
52 As a matter of interest, the word บ ิin column 3 happens to mean “business” in Thai, but the other examples in this table are

not actual Thai words; they are simply used to illustrate flexible diacritic positioning – considered a CTL characteristic.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 24 OF 42 ANTIKYTHERA PUBLICATIONS

 E
xa

m
p

le
s

in
 th

e
T

ha
i L

an
gu

ag
e

–
ภ

าษ
าไ

ท
ย

In columns 2 and 7 respectively, the Mai-ek ่” , one of four diacritic tone indicators used in Thai, has been placed above
each letter. Again, because of the right side ascender of the ป character, the Mai-ek tone mark in column 7 needs to
be shifted to the left relative to the position shown in column 2.

Columns 1 and 8 illustrate the correct placement of the vowel and tone mark diacritics when they are used together.
Diacritic vowels in Thai “outrank” tone marks and so remain where they were shown in columns 3 and 6, but the tone
mark needs to be placed higher than its normal position. Thus, tone marks in Thai can appear in any of four distinct
positions depending on the circumstances.

Thai also has some other diacritic vowels that are placed below their related consonants,
such as the vowel ุ in the second word (ทุก – the 4th and 5th character cells) highlighted in
Figure 14 below. In the illustration to the right, a similar vowel ู is shown paired with the
Yaw consonant ญ to illustrate another interesting layout convention. The ญ character itself
appears to be composite, since its lower element is separate,53 but it isn’t. When combined
with the lower diacritic vowel ู however, the lower element is simply replaced in the cell.

In modern operating systems, the Thai contextual diacritic placements and shape changing
described in this section are provided by the operating system or input method based on
data contained in the font itself, and are not dependent on any features of higher level applications, including so-called
Complex Text Layout (CTL) functions.

In Thai, Dead Keys for diacritics are “post-fix,” i.e. typed after the consonants54 with which they are associated; dia-
critic vowels are expected to be entered before any tone marks they are paired with. The expanded grep-like tech-
niques of the m17n library’s font layout tables55 used by many operating systems to perform all of the arrangements
and modifications described above are also able to correct paired diacritics that are entered in the wrong order, but
don’t generally do this – considering these to be typing rather than layout errors.

Thai also has a class of vowels that are full characters (as opposed to diacritics), but some, such as the ไ in the word
ไทย (“Thai”) are placed before the consonant – in this case, the ท (≈ the Latin t) – with which they are paired, while
others like ะ are laid out more traditionally and follow the consonant. Entry order of these, while also “correctable,” is
considered a user’s responsibility. Although word processors that have auto-correct functionality could reasonably sup-
port such instances, this isn’t considered extensible.

Snippets from the United Nations Universal Declaration of Hu-
man Rights (see footnote 3) have been used earlier; on the right is
the entire Article 1 in Thai which, like all these translations, is
more idiomatic than literal. The English version is “All people are
born free and equal in dignity and rights. They are endowed with
reason and conscience and should act towards one another in a
spirit of brotherhood.”

Cursor keys in Thai (left and right arrows) operate on character
cells rather than individual characters, but editing keys (e.g.
backspace, delete, etc.) generally act on the individual characters
within the cells. Many applications permit modifier keys to modify the behavior of these keys when desired.

Figure 14 compares ragged right and full justification in Thai (see page 21). There are no spaces between words, such
as the highlighted ทุก in the first sentence. The second line of the fully justified example illustrates how spacing be-
tween character cells is altered to “stretch” the line to the right margin. Spaces, which delineate sentences, are high-
lighted, as is the “period” which, in Thai, is typically found only at the end of a paragraph.

53 At some time in history it seems to have been, but has been considered a single letter for centuries.
54 See Figure 2 – Dead Keys on a manual Thai Typewriter (circa 1970) on page 12 for an illustration of how dead keys function

on manual Thai typewriters.
55 In Ubuntu, such *.flt files are located in /usr/share/m17n; their location in other distributions varies.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 25 OF 42 ANTIKYTHERA PUBLICATIONS

 E
xa

m
p

le
s

in
 th

e
 T

h
a

i L
a

ng
ua

ge
 –

 ภ
าษ

าไ
ท

ย

ญ ญู
P P ^

U+0E0D
U+0E0D
 U+0E39

3597d 3797d, 3641d

เราทุกคนเกิดมาอย่” างอิสระ เราทุกคนมีความ
คิดและความเขา้ใจเป็นของเราเอง เราทุกคน
ควรได้รับการปฏิบัต ิในทางเดียวกัน.

เราทุกคนเกิดมาอย่” างอิสระ เราทุกคนมีความ
คิดและความเขา้ใจเป็นของเราเอง เราทุกคน
ควรได้รับการปฏิบัต ิในทางเดียวกัน.

Figure 14 – Thai, without and with full Justification

DEVANAGARI SCRIPT EXAMPLES USING हि^ंदी भाषा (THE HINDI LANGUAGE)

Brief Comments about Hindi
The South Asian Devanagari script used for Hindi is likely used in more languages than any other, being the primary
script used for Bodo, Konkani, Maithili, Marathi, Nepali, Pali, classical Sanskrit and Sindi as well as in more than one
hundred other languages in the areas around India, Nepal (see Nepalese currency example on page 23), and Bhutan.

Hindi itself is one of India’s official languages and the official language for several of its twenty-nine states including
Bihar, Haryana, Himachal Pradesh, Jharkhand, Madhya Pradesh, and Uttar Pradesh.

Devanagari Script is defined in Unicode blocks U+0900-097F and U+A8E0-A8FF,56 and is written from left-to-right, and
top-to-bottom (LRTB). Unlike many scripts, the “baseline” for Devanagari scripts is more pronounced and is closer to
the top of its character cells than the bottom, making this a recognizable script even for those unfamiliar with any of
the languages that use it. Devanagari characters are typically connected to one another within any individual word.

Devanagari script has its own set of numeric digits – the 0 to 9 equivalents are: ० १ २ ३ ४ ५ ६ ७ ८ ९ – but generally
uses the shared numerals defined in the Latin code block. The computer keyboard used for these examples can only
produce the Devanagari digits with the AltGr modifier key, but others, like the “Hindi (Wx)” keyboard mentioned be-
low, place these on the top row, with the Latin 0-9 digits on the numeric keypad.

Examples for Experimentation (No knowledge of Hindi needed)
The keyboard mapping used to create these examples is named “Inscript (m17n),” one of many keyboards used to
type Devanagari script using Latin letters. The Latin key presses when using this layout are shown directly below the
Hindi characters, and the following lines provide the Unicode hexadecimal values and their decimal equivalents as was
done in the earlier Thai example.
This example illustrates a two word, ten character sequence दिaं@ी भाषा भाषा meaning “(the) Hindi language.” The word
“the” is parenthesized because Hindi doesn’t use articles (e.g. “a,” “the,” and similar words).

Char 1 Char 2 Char 3 Char 4 Char 5 Char 6 Char 7 Char 8 Char 9 Char 10

a दि� �ं @ �ी भाषा भ �ा ष �ा
u f57 x o r space Y e < e

0x939 0x93f 0x902 0x926 0x940 0x20 0x92d 0x93e 0x937 0x93e
2361d 2367d 2306d 2342d 2368d 32d 2349d 2366d 2359d 2366d

a दिa दिaं दिaं@ दिaं@ी भाषा भ भा भाष भाषा
If the phonetic “Hindi (Bolnagri)” keyboard is used, the Latin letters should be h i n u d I space B a S a . The
phonetic “Hindi (Wx)” can also be used with the Latin letters h i n x I space B A R A . In either case, take
care to use the Shift key to create the Latin upper case letters shown. As with Thai, Devanagari script has no concept
of “capital” and “small” letters and, when shifted, the same keys produce entirely different and unrelated characters.

Devanagari fonts without all the appropriate ligatures may still produce readable text, but for extended use of any par-
ticular language in these families, the presence of any desired ligatures should be confirmed.58

The first two characters are an example of Character Reordering, introduced on page 11. When the second character,
the vowel दि�, is entered after the initial consonant a, it is placed to the left of it in a manner similar to what happens

56 See http://www.unicode.org/charts/PDF/U0900.pdf & http://www.unicode.org/charts/PDF/UA8E0.pdf respectively.
57 The dotted circle is not part of the Devanagari characters; it is a display convention often used to indicate the relative place-

ment for vowels or diacritics that cannot or do not stand on their own. In some languages, such as Thai, a stand-alone diacritic
or vowel such as the ิ shown on page 24, may appear alone, but will more commonly be displayed over a silent “holder” conso-
nant – in Thai, a “อ” – so they will appear as อิ. The dotted circle convention, therefore, isn’t typically seen in such Scripts.

58 How this can be done is described in Design Note #4, Evaluating Fonts for use in Multi-Lingual Documents.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 26 OF 42 ANTIKYTHERA PUBLICATIONS

 E
xa

m
p

le
s

in
 th

e
 H

in
d

i L
a

ng
ua

g
e

 –
 दि

aं
@

ी भाषा
भ

ाष
ा

with sequential entry of characters in a right-to-left (RTL) script. Unlike the Thai example above, Hindi illustrates the
use of the CTL characteristic known as character reordering, which appears not only with Devanagari script, but many
others. Support for character reordering such as illustrated is needed because of the wide variety of keyboard layouts
in use. With phonetic keyboards, the sounds produced by the initial characters in this example need a reversal as part
of their correct display placement.

On the right is the entire Article 1 of the United Nations Uni-
versal Declaration of Human Rights (see footnote 3) in Hindi
for comparison to other examples used within this document.
Etymology buffs might note the similarity between the pro-
nunciation of the Hindi (भाषा “basa/basha”) and Thai (ภาษา
“pasa”) words for “language.”

ARABIC SCRIPT EXAMPLES USING اللغة العربيه (THE ARABIC LANGUAGE)
Brief Comments about Arabic

Not surprisingly, the Arabic language uses characters from the Arabic script in Unicode’s Middle Eastern group,59 de-
fined in Block U+0600-06FF as well as several supplemental blocks.60 Arabic is written from right-to-left and top-to-
bottom (RLTB). Arabic script is said to appear “cursive,” although that is subjective.

Arabic script is used to write what is known as “Modern Standard Arabic,” as well as Arabic dialects61 or variants
(e.g. Algerian, Egyptian, Lebanese, Moroccan, and Syrian), and less related languages such as Äynu, Azeri, Baluchi,
Beja, Bosnian, Brahui, Chechen, Crimean Tatar, Dari, Gilaki, Hausa, Kabyle, Karakalpak, Konkani, Kashmiri, older
Kazakh and Kyrgyz, Khowar, Kurdish, Malay, Marwari, Mandekan, Mazandarani, Morisco, Pashto, Persian/Farsi,
Punjabi, Rajasthani, Salar, Saraiki, Shabaki, Shughni, Sindhi, Somali, Tatar, Tausūg, Turkish, Urdu, Uyghur, Uzbek,
Wakhi and a number of other languages. Several of these, such as Kazakh and Kyrgyz, are written in several Scripts.

Arabic script includes a set of digits – the 0 to 9 equivalents62 are: ٠ ١ ٢ ٣ ٤ ٥ ٦ ٧ ٨ ٩ , although the shared numerals
defined in the Latin code block are more often used depending on the specific language and context.
Arabic characters within a word are very often connected, and Arabic script makes extensive use of Contextual Shap-
ing, with many characters having isolated, initial, median and final versions. Additionally, some median versions may
vary depending on the specific characters surrounding them.

Examples for Experimentation (No knowledge of Arabic needed)

Here we show how to enter the thirteen character sequence for the Arabic phrase اللغة العربيه (meaning “the Ara-
bic Language”) using the same three methods described earlier.

The top row, labeled “Char 1” through “Char 13” shows the sequence in which the characters are entered and stored in
memory and on disk, while the second row shows the individual Arabic characters.

The keyboard mapping used here is the “Arabic (qwerty/digits)” and the third row shows the letters to be typed on a
standard Latin keyboard if that keyboard is selected as the input method.

The fourth and fifth rows show the Unicode values in hexadecimal and decimal respectively. Finally, the fifth row
shows the resulting progression of the modifications made to the characters as each word is typed.

59 See http://www.unicode.org/charts/PDF/U0600.pdf
60 These include the Arabic Supplement (u+0750-077f), Arabic Extended-A (u+08a0-08ff), Arabic Presentation Forms-A

(u+fb50-fdff) and Arabic Presentation Forms-B (u+fe70-feff). Presentation Forms are discussed later.
61 And recall that there is no widely accepted definition of “dialect.” Its usage is often based as much on politics as linguistics.
62 Note the similarity of the digits 1, 2, 3, and 9 to ASCII numerals. Persian and Urdu flavors of Arabic Script have variants of

these.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 27 OF 42 ANTIKYTHERA PUBLICATIONS

सभी भाषा मनुष्यों को गौरव और अदिधकारों के मामले में
जन्मजात स्वतन्तर्ता और समानता पर्ाप्त aै। उन्aें
 बु@द्िध और अन्तरात्मा की भाषा @ेन पर्ाप्त aै और परस्पर
उन्aें भाईचारे के भाव से बता 2व करना चादिaए।

Figure 15 – Sample Hindi Text Block

 E
xa

m
p

le
s

in
 th

e
 A

ra
b

ic
 L

a
ng

ua
g

e
 –

ه
بي

عر
 ال

غة
الل

Char 1 Char 2 Char 3 Char 4 Char 5 Char 6 Char 7 Char 8 Char 9 Char 10 Char 11 Char 12 Char 13

ا ل ل غ ة ا ل ع ر يب ه
h g g y m space h g u v f d i

0x627 0x644 0x644 0x63a 0x629 0x20 0x627 0x644 0x639 0x631 0x628 0x64a 0x647
1575d 1604d 1604d 1594d 1577d 32d 1575d 1604d 1593d 1585d 1576d 1610d 1607d

ا ال الل اللغ اللغة ا ال الع العر العرب العربي العربيه

When the first character is typed, the computer should immediately recognize that a right-to-left script is being used,
even if the default paragraph is set as left-to-right; the new character (ا) will appear as usual with the exception that the
cursor should now be located to the left of the character instead of its right. If this entry is in a bidirectional para-
graph, some applications will alter the cursor to indicate the direction the text will flow when the next character is en-
tered. More details will be presented in the Hebrew Script section on page 29 and in Design Note #5.

Then, as expected, when the second character ل is entered, it will be placed to the left of the first. When the third
character, which notably is the same character as the second, is entered,63 the variation in character display becomes
evident. The new ل is placed, as expected to the left of the previous one, but the previous one has changed form. This
alteration is generally handled transparently by modern Input Method utilities using Open Type font technologies,64
regardless of whether a specific script has been activated as the current keyboard or not; these utilities will generally
recognize the script that has been entered and act accordingly.

The appearance of the fourth character entered (غ) is likewise altered for display with the previous ل character. Also
note how the eleventh character was altered when the twelfth (ي) was entered.

The sixth character entered is a space. As can be seen from its hexadecimal and decimal values, the space character is
not part of the Arabic script block, but is the same character shared with and used by a variety of scripts. The difficul-
ties in handling such shared characters in paragraphs with bidirectional text will be deferred for the moment, but are
discussed in the Hebrew Script examples section that begins on page 29.

Kashideh Justification and emphasis
An interesting use of Contextual Shaping in certain Arabic
and other Devanagari scripts is a method of full justifica-
tion known by the Arabic term Kashideh; with handwritten
manuscripts, this was accomplished by stretching certain
connecting lines between characters rather than simply in-
serting spaces. Most scripts are fully justified by expanding
the spacing between either words, letters or both, but when
Kashideh is implemented with technology, this is typically
accomplished using character variations available in the
Arabic Presentation Forms (see footnote 60).

To the right are two Arabic renditions from Article 1 of
the Universal Declaration of Human Rights used through-
out this document. The top example shows the text in its
basic flush right, ragged left layout, while the lower exam-
ple shows full justification using the Kashideh layout
method.

63 And, importantly, placed in memory or on disk using the same character code (u+0644).
64 N.B. Fonts with Open Type capabilities include not only those with .otf extensions, but modern TrueType fonts as well.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 28 OF 42 ANTIKYTHERA PUBLICATIONS

Figure 16 – Arabic, before and after Kashideh Justification

 E
xa

m
p

le
s

in
 th

e
 A

ra
b

ic
 L

a
ng

ua
g

e,
 c

on
t.

Specific examples of the differences are highlighted for clarity. Note that, in this example, none of the spacing be-
tween words or characters was altered to achieve full justification, although the use of Kashideh doesn’t prohibit this.

Kashideh is often used automatically when full justification of an all-Arabic paragraph is requested in many applica-
tions, but it can also be applied, usually at an application user’s request, to emphasize an important word or to corre-
spond to phonetic inflection – similar in principle to how Bold and Underline are sometimes utilized in Latin scripts.

HEBREW SCRIPT EXAMPLES USING שפת עברית (THE HEBREW LANGUAGE)
Brief Comments about Hebrew

The Middle Eastern Hebrew Script, defined in Unicode block U+0590-05FF,65 is used in several unrelated languages,
primarily the Hebrew language of course, but also Judeo-Arabic, Ladino, Yiddish and others. Hebrew script is written
from right-to-left and top-to-bottom (RLTB) similar to the Arabic script above. Unlike Arabic, however, the Hebrew
perspective of paired symbols66 is that characters such as parentheses, brackets, and braces are the reverse of what
they are in Arabic or in most western scripts.

Hebrew script includes five characters with different final forms. The character כ, for instance is written as ך at the end
of a word. Although there is no distinction between “capital” and “small” letters, Hebrew text, unlike many non-Latin
scripts, does have both serif and sans-serif as well as some purely decorative typeface designs.

Examples for Experimentation (No knowledge of Hebrew needed)

The keyboard mapping used for these examples is a very basic “Hebrew”67 rather than any of the biblical or phonetic
variants that may also be available. The first example illustrates the two word, nine character sequence שפת עברית,
meaning “(the) Hebrew language.” The bottom row shows the cumulative results as each character is entered.

Char 1 Char 2 Char 3 Char 4 Char 5 Char 6 Char 7 Char 8 Char 9

ש פ ת ע כ ר י ת
a p , space g f r h ,

0x5e9 0x5e4 0x5ea 0x20 0x5e2 0x5d1 0x5e8 0x5d9 0x5ea
1513d 1508d 1514d 32d 1506d 1489d 1512d 1497d 1514d

ש שפ שפת ע עכ עכר עכרי עכרית
Display of the characters is straightforward, since only the five characters with final forms will change “on the fly”
when a word ending is reached, and Hebrew requires no character reordering.

The Hebrew version of the United Nations Universal Declaration of Human Rights Article 1 (see footnote 3) is shown
below in versions with and without the inclusion of Hebrew’s optional diacritics:

ם ערְֶכָּ כּלֹ בְּניֵ האָָדָם נולֹדְוּ בְּניֵ חורִֹין ושְָׁויִם בְּ
בונּהָ ובְּמַצְפּוןּ. ובִּזכְֻיוּתֵֹיהםֶ תְּ לפְיִכָךְ, כֻּלםָּ חונֹנְוּ בַּ

רוחַּ שלֶׁ אַחֲוהָ רֵעהֵוּ בְּ .חובָֹה עלֲיֵהםֶ לנִהְוֹג אִישׁ בְּ

כל בני האדם נולדו בני חורין ושווים בערכם
לפיכך, כולם חוננו בתבונה ובמצפון. ובזכויותיהם

.חובה עליהם לנהוג איש ברעהו ברוח של אחווה

Figure 17 – Sample Hebrew Text Block shown with and without Vowel indicators

65 See http://www.unicode.org/charts/PDF/U0590.pdf and http://www.unicode.org/charts/PDF/UFB00.pdf, the latter containing
the Hebrew “Alphabetic Presentation Forms” Unicode block u+fb00-fb4f.

66 See “Paired Symbols in Text with Mixed Directions” on page 17.
67 The Hebrew Lyx keyboard layout used in this example is shown on page 40.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 29 OF 42 ANTIKYTHERA PUBLICATIONS

 E
xa

m
p

le
s

in
 th

e
 H

e
b

re
w

 L
a

ng
ua

ge
 –

ת
רי
עכ

ת
שפ

KOREAN SCRIPT EXAMPLES USING 한국어 (THE KOREAN LANGUAGE)

Brief Comments about Korean
Omniglot categorizes the Korean language, along with Basque, Cofán, Japanese, Páez, Ticuna, and Urarina, as an Iso-
late – one “with no known connections to any other languages.” Korea’s similarly unique left-to-right Script, used only
by the Korean language, did not evolve over time as others did, but was deliberately designed by a group of scholars
under the direction of an early Korean linguist68 in the year 1443.

In the opening paragraphs of “Exploring Alphabets69,” we glossed over primitive logographic writing systems in which
each symbol represented a specific sound, word or idea, because these are not relevant to most database design efforts.
An example of Hieroglyphs, used in several early writing systems, appears in Figure 3 on page 7 of that document. An
example of Chinese appears in the right margin on page 14 of this document, showing a few of its logograms.

To the right is the Korean translation of the now familiar Article 1 of
the U.N.’s Universal Declaration of Human Rights. At first glance,
this block of text may appear to the uninitiated as yet another Asian
logographic writing system like Chinese or Japanese because:
• It appears to have a wide variety of complex symbols, all of which

seem to be of a similar if not identical size.

• An examination of the code points70 in this segment indicates that
they all come from the Unicode Plane 0XAC00-0XD7AF (“Hangul
Syllables” 음절 한글) which, upon examination, can be seen to contain over 11,000 code points.

This impression is quite misleading, however. A brief glance at a Korean keyboard (whether real or virtual) shows that
Korean text can be typed easily using far fewer keys than most other languages require. So what’s going on?

Korean Script is, in fact, quite orderly and logical, and simply requires a slight change in perspective to grasp. From a
Korean perspective, each of the above symbols is viewed as a “character.” From a western perspective, however, we
would consider each of these symbols to be “syllables,” with the individual components within the symbol being the
actual “characters.” These “component” characters, known as Jamo, part of the much smaller Unicode Plane 0X1100-
0X11FF (“Hangul Jamo” 자모 한글),71 are the “letters” that appear on a Korean keyboard.72

Like alphabetic characters in other Scripts, each individual Jamo is characterized as a vowel or consonant, although
several of these represent what are essentially ligatures.73 The consonant ᄁ, for instance, is a double ᄀ, while ᄈ is a
double ᄇ. The reason why doubled consonant sounds are given their own code point will become apparent shortly.

A Korean syllable must always be composed of a leading consonant followed by a vowel; the first syllable in Figure 18
above (모) is composed of the leading consonant ᄆ and the vowel ᅩ, which are merged to form the single glyph 모.
For syllables that begin with a vowel sound (e.g. 인), a silent consonant ᄋ is provided to keep the rules unequivocal.

A Korean syllable may also incorporate an optional ending consonant: the second syllable above (든) is composed of
the leading consonant ᄃ, the medial vowel ᅳ, and the final consonant ᄂ, which are merged into the syllable 든. The
table below will help as we present some key points to understand about Korean writing and data storage.

68 This Linguist’s day job, interestingly, was “King of Korea” – he is remembered for many reasons as King Sejong the Great.
69 The first Design Note in this series, also available from www.AntikytheraPubs.com/i18n.htm.
70 What you see will be affected by how your operating system stores data; in UTF-8 (strongly recommended for systems sup-

porting multiple Scripts), the AC00 code point value of the 가 syllable is stored as EAB080. See Database Design Note 3 “Ex-
ploring UTF-8” for more information. On-line conversion tools such as https://r12a.github.io/apps/conversion/ are also helpful.

71 There are supplemental Jamo in Unicode Planes 0XA960-0X097F (“Hangul Jamo Extended-A”) and 0XD7B0-0XD7FF (“Hangul
Jamo Extended-B”), but these are not considered here, nor is the 0X3130-0X318F “Hangul Compatibility Jamo”) plane.

72 The standard Korean keyboard layout used in this example is given on page 41.
73 See Database Design Note #1: “Character Codes & Character Cells” beginning on page 8. The difference is that Korean Liga-

tures are not simply combinations of displayed glyphs, but actual characters.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 30 OF 42 ANTIKYTHERA PUBLICATIONS

 E
xa

m
p

le
s

in
 th

e
 K

o
re

a
n

 L
an

gu
ag

e
 –

 안
극
어

모든 인간은 태어날 때부터 자유로
우며 그 존엄과 권리에 있어 동등
하다. 인간은 천부적으로 이성과
양심을 부여받았으며 서로 형제애
의 정신으로 행동하여야 한다.

Figure 18 – Korean text example

Table of Initial Consonants, Medial Vowels, and Ending Consonants for Koean Jamo Characters (components)
Showing standard order/index number, key press on Latin74 keyboard, and Hexadecimal and Decimal values of Unicode Code Points

Order/Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Lead/Initial
Consonant ㄱㄲㄴㄷㄸㄹㅁㅂㅃㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎ
Key Press r R s e E f a q Q t T d w W c z x v g

Jamo U+11+ 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12

Jamo d4300+ 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

(Medial)
Vowel ㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢㅣ

Key Press(es) k o i O j p u P h hk ho hl y n nj np nl b m ml l

Jamo U+11+ 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75

Jamo d4400+ 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

Ending/Tail
Consonant ㄱㄲㄳㄴㄵㄶㄷㄹㄺㄻㄼㄽㄾㄿㅀㅁㅂㅄㅅㅆㅇㅈㅊㅋㅌㅍㅎ

Key Press(es) r R rt s sw sg e f fr fa fq ft fx fv fg a q qt t T d w W z x v g

Jamo U+11+ A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF C0 C1 C2

Jamo d4500+ 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

There are several things to notice in the table above:

ㅈ There are no “capital” or “small” letters in Korean, but the key presses used to produce these Korean Jamo are
case-sensitive. A small t and a capital T produce different results (ㅅ and ㅆ respectively).

ㅈ The Jamo Unicode Code Point ranges in the above chart are restricted to 0X1100-0X1112 (initial consonants),
0X1161-0X1175 (medial vowels), and 0X11A8-0X11C2 (ending consonants). The “missing” code points are defined
to support obsolete Jamo/characters, and are not relevant to this discussion.

ㅈ The decimal values corresponding to the Jamo Unicode Code Points are provided for reference in a subsequent dis-
cussion of how the final stored Hangul syllable values are calculated from the Jamo components.

ㅈ Five of the Lead/Initial Consonants are simply “shortcuts” for double characters (e.g. typing a small e produces
the ㄷ character; typing either a double e e or a single capital E will produce the ㄸ character.)75

ㅈ The only two capital letters on a Latin keyboard assigned to produce vowels are independent from the combinations
they represent. Based on the common behavior of capital letter “shortcut” assignments used for consonants, one
might expect that the ㅒ vowel produced by typing the capital O might also be produced by typing i l , but this
isn’t the case with vowels. Neither will typing u l produce theᅨ character that the P key produces. The remain-
ing characters representing what we call diphthongs are all formed by typing their component vowels.

 ㅈ Sixteen of the glyphs in Ending/Tail Consonants row appear to be identical to (and actually represent the same
“character”) as entries in the Initial Consonants area, but it is important to note that each “final” version of the
character is given its own Code Point in the Unicode Hangul Jamo Plane that is distinct from its “leading” version.

74 Key presses required on a U.S. English keyboard with the iBus “han2(m17n)” mapping for Korean. See this layout on page 41.
75 Not all input methods support the use of both methods. Only three of these pairs appear in the Ending Consonants block.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 31 OF 42 ANTIKYTHERA PUBLICATIONS

Examples for Experimentation (No knowledge of Korean needed)
To best illustrate how Jamo characters are “assembled” into Hangul syllables, the following table will follow how the
system responds as each character of the Korean words 사람 (“person”) and 물 (“water”) are typed.

Dynamic assembly of typed Jamo “characters” into displayed Hangul “syllables”

Example 1: Typing 사람 (person) Example 2: Typing 물 (water)

Character Count 1 2 3 4 5 6 7 8

Key Press t k f k a a n f

Consonant or
Medial Vowel

leading
consonant
U1109

medial?
vowel
U1161

consonant
U11AF ?
U1105 ?

medial?
vowel
U1161

ending
consonant
U11B7

leading
consonant
U1106

medial
vowel
U116E

ending
consonant
U11AF

Jamo “character” ㅅ ㅏ ㄹ ㅏ ㅁ ㅁ ㅜ ㄹ

Screen Display ㅅ 사 살 사라 사람 ㅁ 무 물

Stored Hangul 사 사람 물

Key press 1: Starting with a blank document, press the small t key and an underlined Jamo ㅅ76 will appear. Because
any valid Korean syllable must contain at least an initial consonant and a vowel, it cannot be a completed
syllable, and the system will wait for it to be completed. Observe the underlines throughout this exercise.

Key press 2: The ㅏ Jamo produced by typing k is recognized as a valid vowel, and is therefore combined with the
previous character to display 사. Although this is a valid single syllable word meaning “four,” the
possibility still remains that a final consonant may appear, so the word “four” is not assumed. Note that,
because of the strict rules for syllable construction in Korean, there is no need for dictionary access to
verify that 사 is a valid syllable.

Key press 3: The ㄹ Jamo, typed with the f , is a valid consonant. Since ㄹ can function as both a leading or final
consonant (resulting in a Jamo value of either 0X1105 or 0X11AF respectively), the input system remains
in a tentative state until that can be determined, and the ㄹ is temporarily attached to the 사 to display
the 살 syllable. This is actually a single syllable word meaning “flesh.”

Key press 4: The ㅏ Jamo is once again recognized as a valid vowel. Since a vowel cannot begin a syllable, though, it
is now clear that the previous ㄹ must be the leading consonant of a new (second) syllable – not an
optional final consonant of the previous syllable. The previous syllable 살 (“flesh”) is now recognized as
complete without the ᄅ, “corrected” to read 사 (“four”), and converted to the Hangul syllable 사. It is
now stored, not as two Jamo elements 0X1109 and 0X1161, but a single Hangul syllable 0XC0AC.
Additionally, the screen display shows the ㄹ and ㅏ tentatively combined into a 라 syllable in the same
manner as above – waiting to determine if the syllable is complete or if a final consonant will follow.

Key press 5: Once the final a is typed, and the resulting ㅁ is recognized as a valid consonant, there can be no valid
additions to the syllable, so the 람 is stored as the Hangul syllable 0XB77C once another key is pressed.

Key press 6: When the a key is typed again, another ㅁ appears, as might be expected. This time, however, the Jamo
value in temporary memory is 0X1106 rather than 0X11B7, since this ᄆmust be a leading consonant.

Key press 7: Typing n adds the vowel ㅜ to form a possible one-syllable word “radish,” but it remains unclear
whether that is the end of the syllable, or if there is a final consonant still to be entered.

Key press 8: The final key press f , the same valid consonant ㄹ that we saw in key press 3, completes and “commits”
the syllable. 물 is stored as the Hangul character/syllable 0XBB3C and the one syllable word is complete.

Note that any non-Korean character (e.g. a space) will “commit” a valid Jamo sequence, but erase an incomplete one.

76 The underlining indicates that the character is not yet “committed” as we would say in the world of database management.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 32 OF 42 ANTIKYTHERA PUBLICATIONS

Korean Numeric Characters
Korean generally uses the shared numerals defined in the Latin code block, but has two distinct sets of “digits” (char-
acter blocks) of its own. The first set of 0 to 9 equivalents, used for time, dates, money, addresses, and any number
equal to 100 or above, is:

Digit: 0 1 2 3 4 5 6 7 8 9
Hangul: 공 일 이 삼 사 오 육 질 팔 구

Key Presses: rhd77 dlf dl tka tk dh dbr wlf vkf rn
A separate set of number representations, limited to numbers below 100, is used for stating a person’s age, but is not
shown here.

Converting Jamo Combinations to Hangul Syllables (the basic Math)
Luckily, the Unicode Consortium complemented King Sejong’s logic and order by making the conversion between
Jamo and completed Hangul syllables equally straightforward. Knowing at least one method (and there are several) for
performing such conversions isn’t always necessary, but can help in analyzing data migration issues that may arise.

The formula78 inputs and results are all shown as decimal values for convenience using any available calculator.

Formula: HPO + ((JamoL-JOV)*LCO) + ((JamoV-V2C)*JVO) + (if JamoF Not Null then (JamoF-FCO) else 0), where
JamoL is the lead consonant; JamoV is the vowel; JamoF is the optional Final consonant. Constants used are shown below:

HPS = 44032 0XAC00 Hangul Plane Start: Location of first Hangul Syllable 가 in the Unicode “Hangul Syllables” plane

HPO = 43416 0XA998 Hangul Plane Offset: Offset from beginning of Unicode’s “Hangul Jamo” plane to HPS above

JOV = 4351 0X10FF Jamo Ordinal Value: Offset from “Hangul Jamo” plane to Leading Consonant Ordinal Values 1 to 19

LCO = 588 0X024C Lead Consonant Offset: Offset from Lead Consonant to Consonant-Vowel pairs in “Hangul Syllable” plane

V2C = 4448 0X1160 Vowel to Combination: Offset from Vowel Jamo to its consonant+vowel group in “Hangul Syllable” plane

JVO = 28 0X001C Jamo Vowel Offset: Distance between consonant-vowel combination pairs in any “Hangul Syllable” block

FCO = 4519 0X11A7 Final Consonant Offset: Offset added to Ordinal Value of Jamo Final Consonant: 1 to 27

Convert Jamo ᄆ (0X1106, 4358) and ᅩ (0X1169, 4457) to the Hangul syllable 모 (0XBAA8, 47784)

HPO + ((JamoL-JOV)*LCO) + ((JamoV-V2C)*JVO) +

if JamoF Not Null
then JamoF-FCO
else 0 =

Hangul Code Point
 (dec) (hex)

43416
43416
43416

+
+
+

((4358-4351)*588)
(7*588)

4116

+
+
+

((4457-4448)*28)
(9*28)

252

+
+
+

0
0
0 = 47784 0XBAA8

Convert Jamo ᄁ (0X1101, 4353), ᅡ(0X1161, 4449), and ᆪ (0X11AA, 4522) to the Hangul syllable 깏 (0XAE4F, 44623)

HPO + ((JamoL-JOV)*LCO) + ((JamoV-V2C)*JVO) +

if JamoF Not Null
then JamoF-FCO
else 0 =

Hangul Code Point
 (dec) (hex)

43416
43416
43416

+
+
+

((4353-4351)*588)
(2*588)

1176

+
+
+

((4449-4448)*28)
(1*28)

28

+
+
+

(4522-4519)
3
3 = 44623 0XAE4F

77 These “number representations” are not available directly from the Korean keyboard layout, but are typed using the Latin key
presses shown in this row.

78 All Hangul ⇆ Jamo conversion formulas given in this section are based on section 3.12 “Conjoining Jamo Behavior” in Chap-
ter 3, “Conformance” of The Unicode® Standard Version 9.0 – Core Specification. As shown here, they are made to be more
suitable for hand calculation than implementation as code: the form A-(int(A/B)*B) shown in the procedure for extract-
ing JamoV from Hangul, for instance, is merely A mod B done in steps. Libraries or example Code for performing these con-
versions in a variety of programming languages can easily be found with a web search.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 33 OF 42 ANTIKYTHERA PUBLICATIONS

Converting Hangul Syllables to Jamo Components (the basic Math)
During normal operations, extracting the Jamo values from a syllable isn’t normally useful, but the following algo-
rithm/sequence/formula will accomplish the task if needed:

The first step is to calculate a value (here called Temp) commonly used in the extraction of each of the Jamo compo-
nents from the Hangul syllable.

Extraction of each portion of the Hangul syllable is then accomplished using the formulas shown.

Finally, the result of the secondary calculation for the final character will indicate whether or not such a character ex-
ists. If it does, the final value is calculated; if it doesn’t, none was present in the syllable.

Examples (based on the two example Hangul syllables 모 and 깏 composed in the previous section):

Extract Jamo Component Values from Hangul 47784 Extract Jamo Component Values from Hangul 44623

Temp = Hangul-HPS = 47784-44032 = 3752 Temp= Hangul-HPS = 44623-44032 = 591

Calculate JamoL from Hangul 47784 Calculate JamoL from Hangul 44623
1 + JOV + int(Temp/LCO) 1 + JOV + int(Temp/LCO)
1 + 4351 + int(3752/588) 1 + 4351 + int(591/588)
1 + 4351 + int(6.38095) 1 + 4351 + int(1.00510)
1 + 4351 + 6 = 4358 (ᄆ) 1 + 4351 + 1 = 4353 (ᄁ)
Calculate JamoV from Hangul 47784 Calculate JamoV from Hangul 44623
1 + int((Temp -(int(Temp/LCO) *LCO)) /JVO) +V2C 1 + int((Temp -(int(Temp/LCO) *LCO)) /JVO) +V2C
1 + int((3752 -(int(3752/588) *588)) /28) +4448 1 + int((591 -(int(591 /588) *588)) /28) +4448
1 + int((3752 -(int(6.3809) *588)) /28) +4448 1 + int((591 -(int(1.0051) *588)) /28) +4448
1 + int((3752 -(6 *588)) /28) +4448 1 + int((591 -(1 *588)) /28) +4448
1 + int((3752 -(3528)) /28) +4448 1 + int((591 -(588)) /28) +4448
1 + int((3752 - 3528) /28) +4448 1 + int((591 - 588) /28) +4448
1 + int((224) /28) +4448 1 + int((3) /28) +4448
1 + int(8) +4448 1 + int(0.10714) +4448
1 + 8 + 4448 = 4457 (ᅩ) 1 + 0 + 4448 = 4449 (ᅡ)
Calculate JamoF from Hangul 44784 Calculate JamoF from Hangul 44623 (4522)
JFTmp = Temp -(int(Temp/JVO) *JVO) JFTmp = Temp -(int(Temp/JVO)*JVO)
JFTmp = 3752 -(int(3752/28) *28) JFTmp = 591 -(int(591 /28) *28)
JFTmp = 3752 -(int(134) *28) JFTmp = 591 -(int(21.107) *28)
JFTmp = 3752 -(134 *28) JFTmp = 591 -(21 *28)
JFTmp = 3752 – 3752 = 0 JFTmp = 591 - 588 = 3
 IF JFTmp > 0 IF JFTmp > 0
 THEN JamoF = JFTmp + FCO THEN JamoF = JFTmp + FCO
 ELSE JamoF is null; ELSE JamoF is null;
JamoF is null JamoF = 3 + 4519 = 4522 (ᆪ)

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 34 OF 42 ANTIKYTHERA PUBLICATIONS

CHARACTER ENTRY METHODS

There are many techniques for entering non-Latin characters on a Latin keyboard, and a discussion of these is beyond
the scope of this paper, but generally speaking, they fall into the following broad categories:
• Activating some form of Input Method Editor (IME) and selecting the particular script desired.

This is the most efficient method available for entering more than a few characters, and any operating system of-
fers at least one IME. In Linux, for instance, iBus seems to be the most common such method currently offered.
For each of the examples in this document, the Latin keys are listed that will result in the desired output when an
appropriate Input Method is active. With iBus installed, using the Shift + b keys will produce the Devanagari
character भ using the “Hindi Bolnagri” keyboard79, or the ऴ character using a “Hindi Inscript” keyboard.

• Utilizing a character insertion map provided by either an operating system, an Input Method Editor (see above), or
by the application in use. The one from LibreOffice Writer shown below is typical.

If there is only an occasional
need to enter a non-standard
character for the language in
use, most operating systems pro-
vide character map utilities, as
do many office applications such
as Microsoft Word and Excel,
LibreOffice Writer, and so forth.
Many of these permit directly
choosing a Unicode Block as
well as a font to make locating a
particular character easier. Then,
if that particular block isn’t
present, different fonts can be
selected until the desired charac-
ter is found.

In Examples for Experimentation
(No knowledge of Thai needed)
on page 24, the composite character บิ่” was shown as part of the first example. The dialog box shown above can be
used to enter this series by selecting the Thai Subset, then clicking the cells outlined in top to bottom order, fol-
lowed by the Insert button. Most character insertion maps operate similarly, regardless of the operating system.

• Directly entering the Unicode Hexadecimal value for the desired character.

This is typically accomplished with some key sequence indicating that the next characters are intended as hexa-
decimal Unicode values. In Ubuntu and several other Linux flavors, for instance, the key sequence Ctrl + Shift + u
can be typed in most applications, including the command line, resulting in the display of an underlined u when
the keys are released. If the hexadecimal sequence e 2 a is typed followed by either the Space or Enter key, the
Unicode character ส (a Thai character representing an “S” sound) should be displayed; neither a space or carriage
return should be added as the result of using the Space or Enter keys in this process. Unicode hexadecimal values
are given in all the examples in this paper, and others can be found from the references provided as footnotes in
each script example section.

79 What this means is that keyboard input is treated as is it were coming from a Bolnagri keyboard layout, one of several key ar-
rangements that can be used to type the Devanagari characters used in the Hindi language. See the Examples for Experimenta-
tion (No knowledge of Hindi needed) section on page 26.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 35 OF 42 ANTIKYTHERA PUBLICATIONS

Figure 19 – “Insert > Special Character...” Dialog Box in LibreOffice Writer

• Directly entering the Unicode Decimal value for the desired character.
In Windows, this is usually accomplished by holding the Alt key and entering the decimal value – note that this
must be done with the numeric keypad – for a character. Holding the Alt key while entering 65 on the numeric
keypad will enter the Latin character “A” and holding the Alt key while entering 233 on the numeric keypad will
enter the accented e character é. For Unicode values above 255, there may be additional steps required to activate
this capability but these are well documented by Microsoft. Unicode decimal values are given in all the examples
in this paper, and others can be found from various references provided on-line.

• Some applications define default key combinations to facilitate entry of Unicode character glyphs. In LibreOffice,
for instance, this sequence is Alt + x . To type the symbol for a musical quarter note in Writer, the sequence 1 d
1 5 f Alt + x will produce the quarter note character 𝅘𝅥 . The Alt + x combination is particularly useful for exam-
ining character sequences that have been pasted into a document, since it can be used to convert characters into
hexadecimal sequences as well. Place the cursor immediately after the pasted character “ֆ” and press ” and press Alt + x .
The “ֆ” and press ” character will be replaced by “U+0586.” This can be helpful in identifying that the script in use is Arme-
nian80, and that “ֆ” and press ” is the small “feh” character so that, if necessary, you can select the appropriate keyboard map-
ping for further editing. The capital “feh” character is Ֆ (U+0556) if you care.

• Using an on-screen keyboard for a particular script and clicking on the desired character. There are two types
commonly available. The first is merely a display that shows key mappings. A second more useful and popular
type permits a user to click on its keys as if it were a second keyboard.
In Linux, the on-screen Onboard key-
board81 is laid out to resemble a key-
board, and can be a useful adjunct for
those who have selected an Input
Method, but aren’t very familiar with the
keyboard layout. Onboard follows what-
ever Input Method alphabet is currently
active and, like other similarly sophisti-
cated on-screen keyboards82, can inter-
pret long clicks (holding down the mouse button) on certain keys will display a variety of optional characters that
are related to that key; long-clicking the a key, for instance, will display all the permissible combinations of “a”
with various diacritics, such as á, à, â, ä, ǎ, ă, ā, ã, å, ą, and æ. Some of these maps are provided by Desktop Man-
agers rather than their underlying operating systems.

• Another method for entering composite characters is to use the operating system’s “Compose Key” functionality
(often assigned to the right Alt key, but can usually be user-defined). Pressing and releasing the Compose Key,
and then sequentially typing " then e results in an ë. Using a capital E, of course, results in an Ë. Because the
combinations defined for the Compose key – which may or may not be edited by a user – are typically amenable
to “guessing,” this method is the first method to try if you have need for entering a single unusual character. Try
guessing the combinations for all the various diacritics in the previous paragraph and you’ll see. Make a guess how
you might enter the ç character.

• Linux systems using KDE-based applications, which don’t recognize most of the options described above, provide
their own, command-based option. In the Kate text editor, for instance, pressing [F7] and entering char 0xe27
results in the Thai ว character, while entering char 488 produces the Ǩ character. While this means it supports ei-
ther hexadecimal or decimal Unicode character identifiers, it may be the least convenient method for entering
multiple characters from non-Latin Scripts in practice.

80 This is done, of course, by entering the hex code on the page http://unicode.org/charts/
81 This illustration shows the Onboard utility with the Model-M Theme running on Ubuntu. Like many such utilities, the On-

board keyboard can be extensively configured, so it is worthwhile exploring the documentation for your selected choice.
82 Better supported on mobile devices using Operating Systems like Android than on some more mature desktop systems.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 36 OF 42 ANTIKYTHERA PUBLICATIONS

Figure 20 – “Onboard” on-screen keyboard – typical of many available

http://unicode.org/charts/

KEYBOARD MAPS USED FOR THIS DOCUMENT

Selected keyboard layouts referenced in this document are illustrated below for convenience. Because there are many
alternate layouts in use for various Scripts and Languages, it is advisable to insure that keyboard maps are standardized
as much as possible within your organization, and appropriate key mapping charts made available to users.

Thai Script
The Thai TIS-820(2538) layout shown here is used for the section “Thai Script examples using ภาษาไทย (the Thai
Language)” beginning on page 24.

Thai numeric characters (digits) for 1 through 9 (๑-๙) are shown in green on the top row of the keyboard; the Thai ๐
(zero) key is entered with (shift+Q). Arabic numbers (0-9) are typed using the numeric keypad (not shown here). Do
not confuse the Latin “@” character (shift+2) with the Thai digit “๑” (“1”) (shift+/), which are both entered using the
same key press combination! Typing the English letters shown below when the Thai Input Method is active will pro-
vide an additional example of how Thai text is entered into a multi-lingual system.

Thai Typing Demonstration/Practice (no knowledge of Thai required)
To the right is the first sentence (and more) of the Thai version of
the United Nations Universal Declaration of Human Rights.83 Un-
like many languages, there are generally no spaces between words.
Spaces are used to indicate breaks between sentences. The first
sentence, therefore, which you are encouraged to type using the proper Input Method Editor, is the following:

เราทุกคนเกิดมาอย่” างอิสระ (literally: “we” “every” “person” “birth+come” “at” “independent”)

This brief segment consists of twenty-four typed characters that occupy twenty displayed character cells84:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

เ ร า ทุ ก ค น เ กิ ด ม า อ ย่” า ง อิ ส ร ะ
g i k m6 d 8 o g db f , k v pj k ' vb l i t

Recall that Thai Dead Keys (used in cells 4, 9, 14 and 17) are post-fix, i.e. they must be typed after the base character.

83 See footnote 3 on page 3 for a link to this text in more than three hundred different languages.
84 See Database Design Note #1: “Character Codes & Character Cells” beginning on page 8. The difference is important.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 37 OF 42 ANTIKYTHERA PUBLICATIONS

เราทุกคนเกิดมาอย่” างอิสระ เราทุกคนมีความ
คิดและความเขา้ใจเป็นของเราเอง …

Figure 14a – Abbreviated Thai Text Sample

Devanagari Script
The Devanagari-Inscript layout shown here is used for the section “Devanagari Script examples using दिaं@ी भाषा भाषा (the
Hindi Language)” beginning on page 26.

In this particular keyboard layout, Dead Keys85 for all Diacritics (e.g. those obtained with the s , x , X and other
keys) are Post-Fix Keys – i.e. they are to be typed after the character over or next to which they are to be placed.

Hindi Typing Demonstration/Practice (no knowledge of Hindi or Devanagari required)
On the right is a short segment from the beginning of Article
1 of the United Nations Universal Declaration of Human
Rights86. Instructions for typing the first five words will help
illustrate a few behavioral characteristics not covered earlier.
Our sample text, therefore, which you are encouraged to type using the proper Input Method Editor, is the following:

सभी भाषा मनुष्यों को गौरव और अ...
This segment consists of twenty-four typed characters, including spaces, occupying seventeen character cells87:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

स भी भाषा म नु ष ् भों को गौ र व औ र
m Yr space c vg <d Yax space ka space iq j b space Q j space

सभी भाषा मनुष्भों को गौरव और

Using the left or right cursor keys over character cell 2 will show that this combination is treated as a single cell, and if
the cursor is placed between cells 1 and 2, pressing the Delete key will remove cell 2 entirely. But placing the cursor
between cells 2 and 3 and using the Backspace key will simply remove the �ी भाषा component from cell 2.

This is likewise the case with several of the other combined characters; place the cursor between cells 9 and 10, or be-
tween 11 and 12, for example to observe the same behavior.

85 For the meaning (and use) of Dead Keys, see the discussion on page 12.
86 See footnote 3 on page 3 for a link to this text in more than three hundred different languages.
87 See Database Design Note #1: “Character Codes & Character Cells” beginning on page 8. The difference is important.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 38 OF 42 ANTIKYTHERA PUBLICATIONS

सभी भाषा मनुष्यों को गौरव और अदिधकारों के मामले में
जन्मजात स्वतन्तर्ता और समानता …

Figure 15a – Abbreviated Hindi Text Sample

Arabic Script
The Arabic layout shown here is used for the section “Arabic Script examples using اللغة العربيه (the Arabic
Language)” beginning on page 27.

Note that the paired delimiters, e.g. (), {}, and [], (on the (,) , D , F , C , and V keys) are reversed on the layout to
accommodate the right-to-left layout of the many languages that use Arabic Script. Arabic versions of the paired de-
limiters < and >, although they appear on the Latin { and } keys, are not reversed.

Regardless of the normal right-to-left text flow in languages using the Arabic Script88, Numeric Characters (0-9) are
always laid out in left-to-right order.

Modern Standard Arabic Typing Demonstration/Practice (no knowledge of Arabic required)
The box to the right contains the Arabic translation of Article
1 of the United Nations Universal Declaration of Human
Rights89. Instructions for typing the first five words will help il-
lustrate a few behavioral characteristics not covered earlier.

Our sample text, therefore, which you are encouraged to type
using the proper Input Method Editor, is the following:

(”literally “generates” (as in “birth”) “all” “people” “free) يولد جميع الناس أحرار

This segment consists of twenty-one typed characters, including spaces, occupying twenty-one character cells90:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ي و ل د ج م ي ع ا ل ن ا س أ ح ر ا ر
d , g] space [l d u space h g k h s space H p v h v

يولد جميع الناس أحرار

88 As is the case with all commonly used right-to-left scripts.
89 See footnote 3 on page 3 for a link to this text in more than three hundred different languages.
90 See Database Design Note #1: “Character Codes & Character Cells” beginning on page 8. The difference is important.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 39 OF 42 ANTIKYTHERA PUBLICATIONS

اً متساوين في الكرامةيولد جميع الناس أحرار
والحقوق. وقد وهبوا عقلاً وضميراً وعليهم ان يعامل

بعضهم بعضاً بروح الإخاء

Figure 16a – Abbreviated Modern Arabic Text Sample

Hebrew Script
The Hebrew (lyx) keyboard layout shown here is used for the section “Hebrew Script examples using שפת עברית (the
Hebrew Language)” beginning on page 29.

In the Hebrew Lyx keyboard layout, Dead Keys91 for all Diacritics are post-fix – i.e. they are typed after the character
over which they are to be placed. Note that paired delimiters, e.g. (), {}, [], and <>, are reversed on Hebrew keyboard
layouts to accommodate the right-to-left layout of Hebrew and other languages that use the Hebrew Script.92 Regard-
less of Hebrew Script’s normal right-to-left text flow, numeric characters (0-9) are laid out in left-to-right order.

Hebrew Typing Demonstration/Practice (no knowledge of Hebrew required)
The Hebrew translation of the first sentence in Article 1 of the
United Nations Universal Declaration of Human Rights93 is shown
on the right. Instructions for typing the first five words will help il-
lustrate a few of Hebrew’s behavioral characteristics.
Our sample text, therefore, which you are encouraged to type using the proper Input Method Editor, is the following:

(”literally “all” “my son” “man” “were born” “my son) כל בני האדם נולדו בני

This segment consists of twenty-one typed characters, including spaces, occupying twenty-one character cells94:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

כ ל ב נ י ה א ד ם נ ו ל ד ו ב נ י
f k space c b h space v t s o space b u k s u space c b h

כל בני האדם נולדו בני
כל בני האדם נולדו בני

Beware: the importance of correctly distinguishing between similar characters can easily be shown by substituting “x”
 in the third word, which alters the meaning from “All men were born…” to “All the sons of Hades (ם) ”for “o (ס)
were born…” – a somewhat embarrassing error!

91 For the meaning (and use) of Dead Keys, see the discussion on page 12.
92 See “Paired Symbols in Text with Mixed Directions” on page 17 for a more detailed discussion of Hebrew’s paired delimiters.
93 See footnote 3 on page 3 for a link to this text in more than three hundred different languages.
94 See Database Design Note #1: “Character Codes & Character Cells” beginning on page 8. The difference is important.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 40 OF 42 ANTIKYTHERA PUBLICATIONS

 חורין ושווים בערכםכל בני האדם נולדו בני
ובזכויותיהם.

Figure 17a – Abbreviated Hebrew Text Sample

Korean Script
The Korean Jamo layout shown here, also known as “han2(m17n)” layout, is used for the section “Korean Script ex-
amples using 한국어 (the Korean Language)” beginning on page 30.

The keys on a Korean keyboard generate Jamo, “building block characters” that are then combined by the system into
Hangul syllables. These syllables are what is displayed as Korean text. Typing the English letters shown below when a
Korean Input Method is active will provide an additional example of how Korean Hangul text can be entered into a
multi-lingual system by successively combining Jamo “characters” into Hangul “syllables” and then forming words.

Korean Typing Demonstration/Practice (no knowledge of Korean required)
The box to the right contains the beginning of the Korean version of
the United Nations Universal Declaration of Human Rights.95 Unlike
many languages, there are generally no spaces between words. Spa-
ces are used to indicate breaks between sentences. The four words
therefore are the following:

모든 인간은 태어 날 때해터 (literally “All” “Human” “birth” “when”)

This segment consists of thirty-one typed Latin keys (including spaces) that occupy fifteen displayed character cells96:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ㅁ ㅗ ㄷ ㅡ ㄴ ㅇ ㅣ ㄴ ㄱ ㅏ ㄴ ㅇ ㅡ ㄴ ㅌ ㅐ ㅇ ㅓ ㄴ ㅏ ㄹ ㄸ ㅐ ㅎ ㅐ ㅌ ㅓ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

모 든 인 간 은 태 어 날 때 해 터
a h e m s space d l s r k s d m s space x o d j s k f space E o g o x j space

모든 인간은 태어 날 때해터

Comparing the Jamo ㄱ (typed character 10) with its appearance in the combined Hangul syllable 간 (upper left of
character cell 5) also illustrates how the shapes of Jamo component characters are sometimes altered stylistically
when combined with others to improve the aesthetics of the syllable and text as a whole. – 픝

95 See footnote 3 on page 3 for a link to this text in more than three hundred different languages.
96 See Database Design Note #1: “Character Codes & Character Cells” beginning on page 8. The difference is important.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 41 OF 42 ANTIKYTHERA PUBLICATIONS

모든 인간은 태어날 때부터 자유로
우며 그 존엄과 권리에 … continued

Figure 18a – Abbreviated Korean Text Sample

Other Publications Antikythera Publications

More information and sample pages at:
www.AntikytheraPubs.com

In addition to an ongoing series of Database Design Notes, Antikythera
Publications recently released the book “Business Database Triage” (ISBN-
10: 0615916937) that demonstrates how commonly encountered business
database designs often cause significant, although largely unrecognized,
difficulties with the development and maintenance of application software.
Examples in the book illustrate how some typical database designs impede
the ability of software developers to respond to new business opportunities
– a key requirement of most businesses.

A number of examples of solutions to curing business system constipation
are presented. Urban legends, such as the so-called object-relational im-
pedance mismatch, are debunked – shown to be based mostly on illogical
database (and sometimes object) designs.

“Business Database Triage” is available through major book retailers in
most countries, or from the following on-line vendors, each of which has a
full description of the book on their site:

CreateSpace: https://www.createspace.com/4513537

Amazon:
www.amazon.com/Business-Database-Triage-Frank-Oberle/dp/0615916937

A follow-up book, “Business Database Design – Class Notes from Aristo-
tle’s Lyceum” is due to be available for classroom use in late 2014.

“Business Database Design” leads the reader through the logical design and
analysis techniques of data organization in more detail than the earlier
work – which concentrated more on understanding and identifying prob-
lems caused by illogical database design rather than their solutions.

These logical approaches to data organization, espoused by Aristotle and
an “A-List” of his successors, have formed the basis for scientific discov-
ery over more than 2,400 years, and directly led to the technology we deal
with today, notably including both relational and object theory.

“Business Database Triage” explained the reasons why these principles
were virtually impossible to apply during the early years of our transition
to the use of computers in business, but since the technology is now suffi-
ciently mature that such compromises can no longer be justified, the time
has come to relearn logical data organization techniques and apply them to
our businesses.

EXPLORING COMPLEX TEXT LAYOUT (CTL) PAGE 42 OF 42 ANTIKYTHERA PUBLICATIONS

http://www.amazon.com/Business-Database-Triage-Frank-Oberle/dp/0615916937
https://www.createspace.com/4513537

	Figure 1 – Languages Dialog in LibreOffice Writer
	A is for Apple
	Figure 2 – Dead Keys on a manual Thai Typewriter (circa 1970)
	Perceived Cultural Issues
	Figure 3 – Boustrophedon Text Layout
	Figure 4 – Reverse Boustrophedon Text Layout
	Figure 5 – The Phaestos Disk
	Figure 6 – English (US) Keyboard Layout Segment
	Figure 7 – Hebrew Keyboard Layout Segment
	Figure 8 – Left-to-Right Ruler with Tab Settings
	Figure 9 – Right-to-Left Ruler with Mirrored Tab Settings
	Figure 10 – Left-to-Right Ruler with a Decimal Tab Setting
	Figure 11 – Mirrored RTL Ruler with a Decimal Tab Setting
	Figure 12 – Left Align
	Figure 13 – Bidirectional
	Figure 14 – Thai, without and with full Justification
	Figure 15 – Sample Hindi Text Block
	Figure 16 – Arabic, before and after Kashideh Justification
	Figure 18 – Korean text example
	Figure 19 – “Insert > Special Character...” Dialog Box in LibreOffice Writer
	Figure 20 – “Onboard” on-screen keyboard – typical of many available
	Figure 14a – Abbreviated Thai Text Sample
	Figure 15a – Abbreviated Hindi Text Sample
	Figure 16a – Abbreviated Modern Arabic Text Sample
	Figure 17a – Abbreviated Hebrew Text Sample
	Figure 18a – Abbreviated Korean Text Sample

	Preface
	Objectives
	Requirements

	Defining Complex Text Layout – What it is and what it isn’t!
	Role of System Components in Managing text Layouts

	Characteristics of so-called Complex Text Layout (CTL)
	Characters and Character Cells
	Alphabetic Characters
	Consonants and Vowels
	Vowel Varieties
	Characters as Diacritics
	Accents, Tones, and Breathing Marks as Diacritics
	Character Cells
	Contextual Character Forms (Alternative Characters)
	Contextual Character Shaping (Shape Changing)
	Character Reordering and Placement
	Illegal Character Combinations
	Composite Characters
	Ligatures (Composite Glyphs)
	Dead Keys

	Text Layout Direction (Writing Mode)
	Mixed Text Directions – Bidirectional Text
	Default Paragraph Directionality (Primary Text Direction) in Text with Mixed Directions
	Cursor Movement when Entering or Editing Text in Bidirectional Paragraphs
	Paired Symbols in Text with Mixed Directions
	Rulers, Guides, and Tabs in Text with Mixed Directions
	Left, Right, and Center Tab Stops
	Decimal Tab Stops

	Detecting Primary Text Direction in Paragraphs
	Text Alignment in Documents with Mixed Directions
	Transitioning between Text Directions within Paragraphs

	Justification
	Ragged Justification
	Full Justification
	Kashideh

	Word Breaks, Line Breaks, and Hyphenation
	Collation and Sorting

	A Final Reminder
	CTL Examples in Practice
	Disclaimer
	Common Examples of Mixing Numeric Scripts

	Thai Script examples using ภาษาไทย (the Thai Language)
	Brief Comments about Thai
	Examples for Experimentation (No knowledge of Thai needed)

	Devanagari Script examples using हिंदी भाषा (the Hindi Language)
	Brief Comments about Hindi
	Examples for Experimentation (No knowledge of Hindi needed)

	Arabic Script examples using اللغة العربيه (the Arabic Language)
	Brief Comments about Arabic
	Examples for Experimentation (No knowledge of Arabic needed)
	Kashideh Justification and emphasis

	Hebrew Script examples using שפת עברית (the Hebrew Language)
	Brief Comments about Hebrew
	Examples for Experimentation (No knowledge of Hebrew needed)
	Figure 17 – Sample Hebrew Text Block shown with and without Vowel indicators

	Korean Script examples using 한국어 (the Korean Language)
	Brief Comments about Korean
	Examples for Experimentation (No knowledge of Korean needed)
	Korean Numeric Characters
	Converting Jamo Combinations to Hangul Syllables (the basic Math)
	Converting Hangul Syllables to Jamo Components (the basic Math)

	Character Entry Methods
	Keyboard Maps used for this Document
	Thai Script
	Thai Typing Demonstration/Practice (no knowledge of Thai required)
	Devanagari Script
	Hindi Typing Demonstration/Practice (no knowledge of Hindi or Devanagari required)
	Arabic Script
	Modern Standard Arabic Typing Demonstration/Practice (no knowledge of Arabic required)
	Hebrew Script
	Hebrew Typing Demonstration/Practice (no knowledge of Hebrew required)
	Korean Script
	Korean Typing Demonstration/Practice (no knowledge of Korean required)

	Other Publications

