

BUSINESS DATABASE TRIAGE

An introduction for both Business Managers and Information Technology practitioners to classifying the symptoms and ills of business databases and how to take the first steps toward treating them.

- > Why and how business databases came to be poorly designed and illogically constructed.
- > How poor database design inflates system development and maintenance costs, severely limits the flexibility and extensibility of business software, impedes enhancement efforts, and generally leads to System Constipation.

Frank Oberle

Printed Copies of this Book may be Ordered from the printer, at

https://www.createspace.com/4513537

or from Amazon, at

http://www.amazon.com/Business-Database-Triage-Frank-Oberle/dp/0615916937

www.antikytherapubs.com

An introduction for both Business Managers and Information Technology Practitioners to classifying the symptoms and ills of business databases and how to take the first steps toward treating them.

- Why and how business databases came to be poorly designed and illogically constructed.
- How poor database design inflates system development and maintenance costs, limits the flexibility and extensibility of business software, and generally leads to System Constipation.

Although replete with detailed examples and strategies, this is not primarily a book about database design, nor is it intended to be particularly technical. Rather, this book is an introduction to the fundamental logical principles behind the organization of data, since an unfamiliarity with these principles is one of the primary causes of poor database design.

Frank Oberle

With contributions by Aristotle, Lewis Carroll, Ludwig van Beethoven, Bill Clinton, and other world-renowned data management experts.

Business Database Triage

Publication Information:

Antikythera Publications e-Mail: antikythera@rcn.com

Copyright © 2013 by Frank Oberle All Rights Reserved.

No part of this publication may be reproduced in any form or by any means, including electronic reproduction or reproduction via the Internet without the prior written consent of the author.

ISBN-10: 0615916937 ISBN-13: 978-0615916934 ii.

Business Database Triage

Aristotle 384 bce – 322 bce

Charles L. Dodgson 27 Jan 1832 – 14 Jan 1898

Bertrand Russell 18 May 1872 – 2 Feb 1970

- Famous but Neglected Data Management Experts of the Past -

TABLE OF CONTENTS

Preface	XV
Intended Audience:	XV11
Triage	xix
Approach and Scope	XX
Objectives	
1 - Definition of "Business"	1
An IT Department Must Have Parties	2
Party Guest List	2
Party Seating Chart	
Common Aliases for "Business Database"	
The Avowed Mission of IT Departments	5
The Two Primary Functions of a Business IT Department	6
Relative Importance of an IT Department's Two Primary Functions	6
The Inevitable Conclusions	8

Science and Current Data Management Practices	8
Business and Current Data Management Practices	11
2 - Early History of Data Management	15
Data Management Time Line (445 bce to 1910)	16
Cynicism	
The Birth of Logic, Categorization, Taxonomy, and Science:	16
An Aside – The Egyptian Rule	17
The Continuing 2,100 year Maturation Process (300 bce – 1910)	18
3 - Freedom of the Press: What is a Database?	25
What is a Database? – Dangerous Literature	25
Particularly Egregious Literature	28
Particularly Egregious Beliefs: Normal Forms	
More Normal Form Confusion	33
Even More Normal Form Confusion	34
Mildly Offensive Beliefs	36
Particularly Egregious Post-Logical Product Tag Line	
The Cynic's Corner	
Particularly Egregious Product Name	
Dangerous Comparisons: Databases and Spreadsheets	
Chainsaws and Relational Databases	
4 - A Corporate Merger – Part 1	41
Sample Database Tables from WWC and CWX	42
Two of WWC's Database Tables	42
Two of CWX's Database Tables	42
More of WWC's Database Tables	43
More of CWX's Database Tables	43
Data Structures as Unintentional Business Rules	44
Unintended Business Rules enforced by WWC's Customer Table	45
Unintended Business Rules enforced by WWC's Employee Table	48
Unintended Business Rules enforced by WWC's Order Table	50
Unintended Business Rules enforced by WWC's Line Item Table	51
Unintended Business Rules enforced by CWX's Customer Table	
Unintended Business Rules enforced by CWX's Vendor Table	
Unintended Business Rules enforced by CWX's Order Table	53

Unintended Business Rules enforced by CWX's Line_Item Table	53
Unwanted and Unintended Business Rules - Conclusions	54
Accidents often occur at Intersections	54
Integration of the two Companies	59
Collapsed Hierarchies	
Deja Vu	
"Business Rules" Revisited	63
Conclusion	64
5 - Grammar, Sets, and (Predicate) Logic - Part 1	67
Introduction	67
The Skeptic's Corner	68
Basic Grammar Elements used in Database Design	68
Grammar: Nouns	69
Sets and Classes – The Crucial Difference	71
Grammar: Verbs and Adjectives	72
Naming our Things	73
Homonyms, including Homographs, and Homophones	73
Synonyms and Class Distinctions	74
Nash on Classes	74
The Appropriate Level of Precision	75
Recognizing Purpose in Naming – Beyond Synonyms	75
McNaming and other Travesties	77
Obscure Naming	78
Lazy Naming	78
In Praise of Laziness	78
Quasi-Mathematical Naming	79
Grammar: Simple Sentences and Propositions	80
Logic & Precision in Daily Life	82
Optional Homework Assignment	86
Set Theory and Predicate Logic	87
Caution about studying Lewis Carroll's "Symbolic Logic."	87
Aristotle's Help with Adjectives as Attributes	91
Aristotle as a Database Designer – Really?	92
Aristotle's take on NULLs	92

Normalization: Carroll, Codd, and Nixon	93
Grammar - Revisited	94
Back to History and On to the Future	94
6 - Recent History of Data Management	97
Computers and their Caretakers	97
Nash on Progress	98
Information Technology Time Line (from 1940)	100
The Modern Computer Era Begins	100
Business Joins the Modern Computer Era	102
The word "Relational" becomes Popular	107
Inevitable Conclusions	
Serendipity	114
7 - Freedom of the Press: The Customer	117
Business Perspective	117
What is a Customer? - Misguided Literature	118
Customer Semantics – Pseudo-Synonyms	123
8 - A Corporate Merger – Part 2	127
Resolution of the Merger	127
Movement of Data to the Consolidated Schema	129
Application Changes	130
A Note on Naming Conventions	131
Proper Subsets as Views	132
For Business Managers who have read this far:	134
Intersections as Views	134
Addition of Records	136
Routine Usage of Views	137
A Note about Transaction Control	137
Some Comments on "Base Tables"	139
Renaming the Name Attributes – Who's on First?	140
Revisiting Proper Attribute Placement in Classes and Tables	
A Core Principle about Redundancy	
Conclusion	143
9 - Freedom of the Press - Impedance Mismatches	145
Background	145

Origin of a Misleading Analogy	146
The Benefits of Deliberate Impedance Mismatches	148
So What are the Real Mismatches?	149
Data Management	149
Handling of Processes (Location, Location)	151
Conclusion	152
10 - Playing with Trucks - Part 1	155
Background and Business Model	155
A Sad but Common Mistake	156
Original Data Model	157
Thoughts from Aristotle	157
The Slippery Slope to Business Expansion	160
Europe Beckons	163
Chaos Reigns	163
Applicability of Trailer Table Attributes to Actual Trailer Types	165
Matching Shipments and Trailers	166
A Sobering Perspective	167
11 - Handling Constraints	169
Two Primary Purposes of Constraints	170
Common Approaches to Handling Constraints	171
Primitive Declarative Constraints in the Database ($C \cap F$)	172
Higher Level Declarative Constraints in the Database (C ∩ F)	176
Declarative Constraints outside the Database (D ∩ F)	179
Procedural Constraints Generally (C \cap E) and (D \cap E)	
Summary of Constraint Approaches	180
The Gamut of Constraint Practices	180
Early Programming of Database Interactions	181
The Cynic's Corner	182
Flexible Constraints	
Corrected but Redundant Programming of Database Interactions	
Corrected but Redundant Programming of Database Interactions One Routine – One Database	185
Corrected but Redundant Programming of Database Interactions One Routine – One Database Summary of Constraints Implemented Outside the Database	185 186
Corrected but Redundant Programming of Database Interactions One Routine – One Database	185 186 187

Common (and Loud) Objections to Such Heresy	188
Redundant Constraints in Series	189
Sharing Domain-based Constraints – The Ideal	191
Sharing Pattern-based Constraints – Possibly Acceptable	192
Sharing Process Based Constraints - One Approach	
Sharing Process Based Constraints – A Better Approach	
Informal Taxonomy of Constraint Types and Locations	
12 - Weights & Measures - Part 1	201
The Business Issue	202
The Objectives of this Exercise	203
Aristotle Speaks	203
The Scope of this Example	205
Design Principles	205
Design Objectives	207
Classes of Weights and Measures	209
Measurement Classes in Scope	210
Measurement Classes Not In Scope	213
Expressing Measurement Information as Data	215
Yet Another Taxonomy, and a possible Subset	218
Too Many Attributes?	219
Recoil – A Dissenting Opinion	219
Homework Assignment	
An Unexciting Period of History	223
13 - Weights & Measures - Part 2	225
Prelude – The Mathematics of Weights & Measures	225
The Gimli Glider	225
Conversion Factors to Consider	226
Multiplier	226
Offset(s)	227
Sample Conversion Calculations	227
Converting from a root UOM to a non-root UOM:	228
Converting from a non-root UOM to a root UOM:	229
Function Interface	230

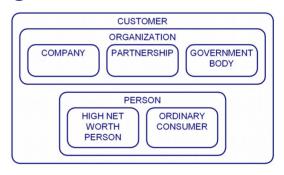
Naming Revisited	231
Unit-of-Measure	232
Unit-of-Issue	
Clarity	232
Hiatus	233
14 - Grammar, Sets, and Predicate Logic - Part 2	235
Classes, Sets and Attributes Revisited	
Sherlockian Observation #1	236
Scope of this Chapter	237
Object Classes and Sets versus Relational Classes	238
A Counterfeit Diamond of Death and its Triangular Sibling	238
A Plethora of Propositions and Predicates	239
Presidential Precision with Predicates	239
Ambiguous Naming Revisited	242
Sherlockian Observation #2	243
Triaging the Triangle	
Sherlockian Observation #3	
Classes or Roles? – a Momentary Digression	
A Genuine Diamond of Death	
Told You So	
Classes versus Sets Redux	
Employees, Prisoners, and Patients	254
15 - Playing with Trucks – Part 2	257
Introduction	257
Naming: An Annoying Reminder	257
Conveyance	258
Some Potential Subclasses of Conveyance	258
Simple Two-Way Intersection	260
A More Complex Three-Way Intersection	261
An Alternate Approach – Tabular Analysis	263
Taxonomies and Intersections	266
Conclusion	268
16 - Weights & Measures - Part 3	271
Desired End-State Implementation	271

Starting Point – Existing Database Structures	271
Sample Data	274
Use of Tables	274
Stored Procedures	276
Applications and Reports	276
Homework Assignment	277
Sample DDL	277
Trivia	277
17 - Weights & Measures - Part 4	279
Implementation: Conversion Strategy and Progression	279
Levels of Generalization	280
Typical Starting Condition	281
An Even Less Benign Starting Condition	284
A Tempting (but very misguided) Design Enhancement	285
Non-Relational – and also misguided – Constraints for UOM	288
Relational Constraints for UOM and Adding Standardized Values	290
The Migration Process	292
Business Case Analysis	292
Preparatory Technical Analysis	293
Design and Development of New Database Structures	295
Design and Modification of Existing Database Structures	296
Need for Patience	300
Modifications of Data Consumers	
Modification of Data Creators	
The Testing Process	304
Conversion Consistency and Accuracy	304
Data Integrity	304
Other Issues to be Considered	305
Data Precision	305
Measurement Ranges	305
Multiple Factor Measures	306
Conversion between Measurement Classes	306
Abbreviations and Symbols	306
Transfer of Data to Other Systems	307
Application Considerations and Caveats	307

Useful References	309
18 - Contact Mechanisms	311
Introduction	311
Attributes versus Columns	311
Some Issues of Concern	314
Scope of this Chapter	315
Homework Assignment	315
Extra Credit Homework Assignment	316
Approaching a Solution	317
Common Database Support for a Solution	318
Currency – A Sample Supporting Domain Table	319
Language – A Sample Supporting Domain Table	319
Country – A Sample Domain Table	320
Country: Various "Name" Attributes	321
Country: Various "Label" Attributes	321
Country: Data Validation Masks	323
Country: Data Display Masks	323
Country: Various Hierarchy Attributes	324
Using Default Values and Exception Handling	
One Possible Implementation of Address Management	331
Key Tables in this sample Address Schema	
Address Life Cycle – Using the Proposed Schema	
Real Address Changes	
A Simplified Implementation of Address Management	
Party Relationships	
Address Semantics – Pseudo Synonyms	
Using Propositions in Triage and Design	
Implementing Contact Mechanism Structures	
Additional References	
19 - The Single Operational Database	345
The Benefits of a Single Corporate Database	346
Implicit Acceptance of Multiple Corporate Databases	347
Objections to a Single Database – The Gamut	348
Disparate Data Models - Perceived Technical Impediment	348

Disparate DBMS Products – Technical & Sociopolitical Impediment	350
Potential Size of Unified Database - Perceived Technical Impediment	351
Performance of Unified Database - Perceived Technical Impediment	352
Complexity of Unified Database - Perceived Technical Impediment	354
Single Point of Failure - Perceived Technical Impediment	354
Security Considerations – Perceived Technical Impediment	354
Habit or Inertia – Sociopolitical Impediment	355
Ignorance of History - Sociopolitical Impediment	356
Myopia – Sociopolitical Impediment	356
Inappropriate Budgetary Processes – Sociopolitical Impediment	356
Need for Speed & Lack of Recognition - Sociopolitical Impediments	
Magnitude of Task – Sociopolitical Impediment	
Loss of Control - Sociopolitical Impediment	
Rationalization – Data Contamination	
Rationalization – Security	
Rationalization - Conflicting Data Definitions	
Rationalization – Loss of Power & Authority	
Integration with Packaged Software	360
The Cynic's Corner	361
Solutions in Sheep's Clothing.	363
Data Aggregation Products	364
Database Synchronization Products	365
Entity Types for Data Structures	366
Moving toward a Single Business Database	366
20 - Denouement	373
The Rant Ends	377
Appendix A – Bibliography	379
Recommended Material (suitable for Learning)	379
Recommended Material (suitable for Learning, but with Caveats)	379
Not Recommended Material (suitable only for Laughing or Crying)	380
Bibliography with Ratings	380
Appendix B – Pseudo-Code Examples	387
Chapter 8 - A Corporate Merger – Part 2	
Table and View Creation for Chapter 8 Examples	388

Table and View Population for Chapter 8 Examples	389
Updating Merger Sample Data	391
Chapter 11 - Handling Constraints	392
Table and View Creation for Chapter 11 Examples	392
Chapters 12 & 13 - Weights & Measures Parts 1 & 2	393
Table and View Creation for Chapter 12 Examples	393
Bare Bones UOM_Convert Function in PL/SQL	396
Bare Bones WM_SYS_VAL Function in PL/SQL	398
Chapter 14 - Grammar, Sets, and Predicate Logic - Part 2	399
Chapters 16 & 17 - Weights & Measures Parts 3 & 4	401
WM_Widget Demonstration Table	401
System Values Auto-Population Trigger	403
Table for Weights & Measures Test Cases	403
Sample Data for Weights & Measures Test Cases	404
Sample SQL Query for Weights & Measures Test Run	404
Chapter 18 - Contact Mechanisms	404
Table Creation and Population for Chapter 18 Examples	404
Populate Admin_Level Tables	409
Create Postal Reference and Address Tables	410
Bare Bones Validate_Post_Code Function and Trigger	410
Populate Postal System and Address Tables	411
Address Life Cycle Examples	412
Addresses and Locations	413
Appendix C – Weights & Measures – Data	415
Conversion Factors	415


The "customer-as-organization" versus "customer-as-person" issue illustrated in A Corporate Merger – Part 1 under "Accidents often occur at Intersections" on page 54, for instance, provides one example of the differences between good and bad material, and what to look out for.

In his excellent data modeling book ¹⁴⁵, David Hay makes it very explicit that an "order" is essentially a contract between parties, an that a party may be (actually "must be") either a person or an organization of some sort. Although not as explicit, the authors of The Data Model Resource Book ¹⁴⁶ likewise address this correctly. These two books (and certainly others) can safely be used as learning material, but many other authors present some solutions that, while possibly workable for single isolated applications (and is there really any justification for any of those anymore?), lead inevitably to poor data architectures not only across the enterprise but also beyond it, and certainly add unnecessary complexity to any applications written to utilize these data structures.

What is a Customer? - Misguided Literature

Presented with an identical "customer-as-organization or customer-as-person" scenario, one author, in what is an otherwise generally useful book¹⁴⁷, and one of the relatively few that are non-product-specific, suggests creating the class structures shown to the right.

This may or may not represent a convenient *view* of these entities

Poor Modeling of Subtypes and Supertypes.

Don't accept this!

from the standpoint of some particular application, but it clearly conflicts with reality. Consider *some* of what this diagram states in logical terms:

¹⁴⁵ Hay [1]; see page 383. Chapter 6 of his book (Contracts) begins on page 95.

¹⁴⁶ Silverston [1]; see page 384. See Chapter 4 of his book.

¹⁴⁷ Simsion [1]; see page 385. See "Subtypes and Supertypes" on page 92.

Derived (Normalized) Proposition	Alternate Equivalent Propositions
T All Companies are Organizations	 T Every Company is an Organization T A Company must always be an Organization T Any Company is/must be an Organization
F All Organizations are Customers	 F Every Organization is a Customer F Any Organization is/must be a Customer F No Organization is not a Customer
Therefore: (based on the above) F All Companies are Customers	F Every Company is a Customer F Any Company must be a Customer
F All Persons are Customers	F Every Person is a Customer F Any Person is/must be a Customer F No Person may not be a Customer
T All Partnerships are Organizations	T Every Partnership is an Organization T Any Partnership is/must be an Organization
F No Partnership is a Company	 F No Partnership is a Company F No Partnership can be a Company F No Company is a Partnership F No Company can be a Partnership

In "Mildly Offensive Beliefs" on page 36, I referred to the author's quote "there is usually more than one way of doing this (classifying data into tables and columns)" and suggested that the way he selected for his classification of data into tables and columns was logically incorrect.

By reading the author's diagram as if it were a group of Propositions¹⁴⁸, it is easy to see that this analysis is fundamentally flawed and should be summarily rejected as a basis for any further design.

As seductive as it may sound outside of a larger context, Organizations and Persons cannot logically be considered subclasses of Customer. A further difficulty with the model is the author's introduction of "High Net Worth Person" and "Ordinary Consumer" as sub-Classes, which presents the following logical difficulties.

¹⁴⁸ As mentioned repeatedly in this book, this is an extremely useful logical quality-control measure – far more useful in most cases than determining the "normal form" of a table.

LESSONS FOR CHAPTER II HANDLING OF CONSTRAINTS

- ➤ Constraints can be used to enforce Business Rules as well as Data Rules, and if we don't clearly distinguish between the two when designing a database, the oversight will eventually lead to serious problems.
- ➤ Constraints on Data Rules are absolutely necessary to protect data integrity, and tend to be factual, specific, and immutable. See "Playing with Trucks Part 1" to see how poor database design conflicts with this.
- ► Constraints on Business Rules are likewise necessary, but tend to be arbitrary and subject to change over time.
- ► Constraints can and often are implemented unintentionally.
- ► Constraints can be implemented ...
 - ▼ in a variety of ways
 - ▼ in a variety of locations
 - lacktriangledown in parallel with other Constraints or in Series with them
- ► For Data Rules, the "gold standard" for Constraints is that they are
 - ▼ implemented in a Declarative manner,
 - ▼ implemented in the Database, and
 - ▼ implemented in Series with any other Constraints
- ► From a business perspective, the effectiveness of any Constraints is severely and negatively impacted if there are multiple databases.

Supporting the handling of weights and measures at an enterprise wide level is perhaps the easiest (i.e. least politically sensitive) enhancement to undertake. It is thus recommended as a suitable "first step" towards introducing developers to the many benefits that can accrue from a logical approach to database design.

"Est Modus in Rebus" ("There is Measure in all Things") – Quintus Horatius Flaccus (Horace): Satires i,1

12 - Weights & Measures - Part 1

Weights and Measures²²¹ of various sorts are a key component of most business databases and, indeed, of many types of databases beyond the scope of this book, so it would be remiss not to discuss how these are typically handled and contrast that with how they should be handled. Although at first glance, this manner of properly handling data in accordance with the relational model and predicate logic might seem convoluted, it actually allows both businesses and applications to achieve a much higher level of flexibility, increases data integrity, reduces development time needed to implement future changes, and achieves other objectives dear to the hearts of both IT and business professionals...

Logical approaches for reorganizing other types of data structures to better reflect reality have been presented earlier, but at a rather more general level than many developers might consider useful. As I mentioned earlier, this is not primarily intended to be a database design book, but lack of actual example code can certainly contribute to the idea that the ideas presented here are more theoretical than practical.

²²¹ In the spirit of being precisely "logical," it should be admitted that a Weight is, of course, a specific form of Measure, but given the common acceptance of the term "Weights and Measures" throughout physics and science textbooks, as well as in U.S. and international standards, that term will be used here with only this insincere token apology.

In order to lend credence to the idea that actually implementing logical data structures is not only possible in the "real world," but actually quite straightforward, the subject of Weights and Measures will be dealt with in much greater detail over several chapters, even going so far as to discuss analysis and implementation strategies and to provide pseudo-code²²² examples.

The Business Issue

In "Playing with Trucks – Part 1" (beginning on page 155) as well as in many other scenarios where a business contemplates removing some of the strictures placed on their operations, or even actively joining the global community, implementation of designs based on the approach outlined over this and the next few chapters permits a much higher degree of flexibility and a more rapid and painless response to similar business needs in the future.

Although the scope of this book has been specifically limited to "Business²²³ Databases," proper and explicit handling of measurement data is certainly applicable to other fields where data is "explored." Consider the following anecdote, for example:

In 1999, NASA conducted a research mission in which its Polar Lander was to explore the surface of Mars. Another craft, the Climate Orbiter, would circle the planet and serve as the intermediate navigation and control station, and relay data between the Polar Lander and Earth.

On September 23, 1999, after a 286 day journey, the Climate Orbiter, which cost about \$125 million, fired its engine to achieve the desired orbit according to instructions transferred between the Lockheed Martin Corporation in Colorado and NASA's Jet Propulsion Laboratory in California.

Unfortunately, the Orbiter came about 100 kilometers closer to the planet's surface than the engineers intended – and actually about 25 kilometers closer than the altitude at which the Orbiter could even function. As a result, the craft's propulsion system overheated, ultimately causing the Climate Orbiter to be lost.

When looking into the causes for this, it was determined that all data was handled as

²²² Well, it's actually very simple (albeit working) PL/SQL code used to test the functionality while writing these chapters, but for non-Oracle users it may as well be pseudo-code.

^{223 &}quot;Business" as defined in Chapter 1, (Definition of "Business"), beginning on page 1.

absolute values – that is, with no stated unit-of-measure. NASA assumed that distances were in kilometers but, unfortunately, the Lockheed Martin engineering team supplied the absolute values with an assumption that the distances were in miles. Oops!²²⁴ No Harm, no Foul, apparently. On September 30, 1999, according to CNN²²⁵, the JPL administrator said "No one is pointing fingers at Lockheed Martin."

Of course this was just taxpayer money. Most business managers are not so forgiving; the lesson is that removing assumptions can never hurt.

The Objectives of this Exercise

Earlier anecdotal chapters, such as "A Corporate Merger – Part 1" and "Playing with Trucks – Part 1" illustrated some of the difficulties resulting from poor database design. These examples emphasized the necessity for both designing data structures that closely fit the taxonomies of the real-world Things being represented by the data they contain, as well as avoiding hard coding of assumptions into database structures. Both of these practices invariably lead to severe system limitations. Furthermore, hard coding of assumptions into database structures causes these same assumptions to be implicitly hard coded into any applications utilizing them, since there is very little that software developers can do to effectively mitigate this. Unfortunately, the implications of this hard coding is seldom recognized, much less addressed.

Handling of Weights and Measures in typical information systems is one particular area in which hard coding of assumptions occurs quite frequently. This discussion should help expose the extent of these assumptions.

Over the next few chapters, we will discuss what specific data elements are required to Aristotle Speaks

Remember that the second sentence in his Categories describes "univocal" (unequivocal or unambiguous) naming. The need for this

is very close to the root of Philosophy, Logic, and Science, and was recognized as so by Newton, Carroll, etc. Are any of us wise enough to simply ignore this?

Categories; Part 1; Section 1.2

^{224 ...}and this isn't an acronym for Object-Oriented Programming.

²²⁵ http://articles.cnn.com/1999-09-30/tech/9909_30_mars.metric.02_1_climate-orbiter-spacecraft-team-metric-system?_s=PM:TECH

unequivocally define the information elements needed for a representative sampling of weights and measures. We will demonstrate that there are numerous steps that can be taken to model this data more effectively in relational databases, and show how to make the transition from existing practices to designs that are more reliable, flexible and extensible, and to do this in an evolutionary manner if necessary. To accomplish these objectives we will, over this and several additional chapters do the following:

In this chapter, we will:

- Outline the design principles and objectives used to guide development of models and processes for storing and manipulating weights and measures.
- ▶ Define the various classes of weights and measures that are in and out of scope for this exercise.
- ► Discuss what data elements are needed to completely and unequivocally define any particular measure.
- Construct a generalized logical model for handling most types of data related to weights and measures.

In "Weights & Measures – Part 2" we will discuss the mathematics required for correctly manipulating data relating to weights and measures.

In "Weights & Measures – Part 3" we will describe the desired end state of our system(s) once changes have been made.

In "Weights & Measures – Part 4" we will:

- Outline a process for migrating from typical database and application designs to extensible designs in manageable stages.
- ▶ Discuss some of the factors that will need to be specified for any companyspecific implementation of these methods.
- ► Discuss some issues encountered when creating applications that utilize logical data models such as the one presented here.

Finally, in "Chapters 12 & 13 - Weights & Measures Parts 1 & 2" of Appendix B, (page 393) we will:

"Skill is fine, and genius is splendid, but the right contacts are more valuable than either."

Sir Arthur Conan Doyle (1859-1930)

Like the four Weights and Measures chapters, this one crosses the imaginary line into a discussion of design techniques, but only far enough to outline and explain a logical, but non-typical, approach to handling Party-based contact attributes.

18 - CONTACT MECHANISMS

Introduction

Throughout many of the previous chapters, the **Party** entity/superclass, although of paramount importance to a well-designed Business Database, hasn't been shown with any attributes but the primary key that is inherited by all of the Party subclasses (e.g. people) participating in the transactions of the business.

This chapter introduces Contact Mechanisms, which are the most common attributes of the **Party** entity in most Business Databases.

As used in this chapter, the term "Contact Mechanisms" refers to any means we have for active or passive communications between Parties in connection with the business they are conducting. If the concept of **Party** isn't clear at this point, it may help to review "An IT Department Must Have Parties," beginning on page 2, once more. Examples of contact mechanisms include telephone numbers of

Attributes versus Columns

There are any number of well-meaning Relational Database design texts stating that any table having nothing but a primary key column can be safely eliminated from the design.

This is nonsense of the first order, possibly originating from the equally silly belief that "Entities become Tables, and Attributes become Columns" in a database.

The reality is that many Attributes become Relationships rather than Columns, and the Party Entity is the most common example of the use of such relationship attributes. various types, mailing addresses, and so forth. The following list discusses several examples of these.³³²

- ► Address, as used here, is a grouping of data written or printed on any item as directions for delivery to some Party or some Party's specified location. An Address of this type generally falls into one of two broad classes:
 - ▼ Virtual Address, defined as a description of a location to which certain items may be sent for immediate or eventual delivery to a Party (typically a person or organization), whether or not the Party generally resides or can be found at that address. A Post Office Box is an example of a Virtual Address, as are e-mail "addresses," social media "handles" and other such entities.
 - ▼ Physical Address, a subset of Virtual Address defined as describing a physical location to which deliveries may be made for a particular Party (typically an organization or person), and/or at which the Party may typically be located or reached. A home address is an example of a Physical Address.

Whether the distinction between Virtual and Physical Addresses is (or may become) important to a particular Business needs to be determined deliberately to avoid introducing any assumptions into the Company's IT systems which might become difficult to compensate for at a later stage of the company's evolution. The distinction isn't often made at the level of data definitions, since most businesses rely on humans to make such judgments as they process orders for shipping for example. Increasing use of "self-serve" ordering, however, particularly from foreign countries, should cause such distinctions to at least be considered when designing or evaluating a system.

▶ Device Contact Number, a grouping of data (usually numeric characters) entered in sequence, and used to establish electronic communications between two or more Parties, their locations, or their electronic devices. The most common example of such an element would be a **Telephone Number**. In normal use, such numbers may possibly need to be combined with

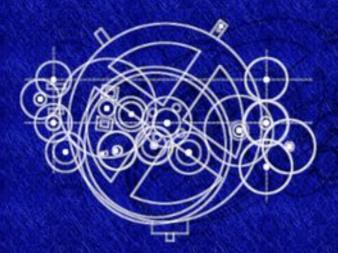
³³² At the risk of being repetitious, this is not intended primarily as a design tutorial, but rather to provide enough "straw man" examples and information to expose readers to some of the issues that must be considered when designing database schemas that will be appropriate for logical and extensible support of Business activities.

additional numeric characters to indicate certain exception processing, such as specific routing instructions (e.g. to connect to a "foreign" telephone system), billing information, etc., but those are independent attributes.

▼ to a Location: examples would include:

- ... any telephone numbers for an Office or Corporation, a Machine (e.g. fax, modem etc.), a Residence (potentially associated with multiple persons).
- ... telephone numbers for Alarm systems (1-way, not 2-way), whether land-line or cellular.
- ... telephone numbers used to connect to other devices (1-way as well as 2-way), whether land-line or cellular. Examples would be wireless Hot Spots (fixed or location independent), household cellular devices linking various wired handset instruments in a household to the telephone infrastructure, etc.
- ... IP Addresses or MAC Addresses used to route any data communications to a specific device, particularly where the device is associated with some Party.
- ▼ to a Person: examples include telephone numbers for Cellular Phones that are Party-specific, but location independent (typically for an individual person).

▶ Broadcast


▼ One Wav

Television and Radio channels (always by a Party – usually by a Company). URLs (Web pages, Podcasts, Blogs & such; done by any subclass of Party). Media advertising of various other types, e.g. billboards, and other signage, which occur in far too many forms and locations to consider listing.

▼ Two Way

Interactive Web Pages, e.g. customer service sites, and the like

The preceding is, of course, not a complete listing of contact mechanisms, nor is it likely to perfectly match the needs of any specific business, and it is the analysis team's responsibility to identify as many potential contact mechanisms as possible while evaluating a database design for some particular business. And, of course, the purpose of such contact mechanisms as well as the technologies used for these mechanisms need to be considered in light of a particular company's needs. Further, the above list doesn't consider the content of messages to

Triage and First Aid for Business Systems - inspired by the teachings of Aristotle as well as those of Beethoven, Carroll, Boole, Russell, Clinton and other philosophers and data organization experts throughout history.

Though seemingly replete with detailed examples and strategies, this is not intended as a book about database design per se. Nor, aside from a few examples where some familiarity with SQL may be helpful, is this book intended to be particularly technical.

Rather, this book is an introduction to the fundamental logical principles behind the organization of data - a critical responsibility of both IT Technologists and Business Managers. Experience suggests that many of these principles - which form the foundation of all the Sciences - are as unfamiliar to IT Personnel (including many of those tasked with designing business databases) as they are to Business Managers.

> This book is therefore aimed at both those groups.

Antikythera Publications

Databases Information Management Business www.antikytherapubs.com

